These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10579032)

  • 1. Ultrasonic slow waves in air-saturated cancellous bone.
    Nicholson PH; Strelitzki R
    Ultrasonics; 1999 Sep; 37(6):445-9. PubMed ID: 10579032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of airborne ultrasonic slow waves in calcaneal cancellous bone.
    Strelitzki R; Paech V; Nicholson PH
    Med Eng Phys; 1999 May; 21(4):215-23. PubMed ID: 10514039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What kind of waves are measured in trabecular bone?
    Pakula M
    Ultrasonics; 2022 Jul; 123():106692. PubMed ID: 35176689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone.
    Hughes ER; Leighton TG; White PR; Petley GW
    J Acoust Soc Am; 2007 Jan; 121(1):568-74. PubMed ID: 17297810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic wave propagation in bovine cancellous bone.
    Hosokawa A; Otani T
    J Acoust Soc Am; 1997 Jan; 101(1):558-62. PubMed ID: 9000743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro estimation of fast and slow wave parameters of thin trabecular bone using space-alternating generalized expectation-maximization algorithm.
    Grimes M; Bouhadjera A; Haddad S; Benkedidah T
    Ultrasonics; 2012 Jul; 52(5):614-21. PubMed ID: 22284937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.
    Wear KA
    J Acoust Soc Am; 2013 Apr; 133(4):2490-501. PubMed ID: 23556613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.
    Wear KA
    J Acoust Soc Am; 2010 Oct; 128(4):2191-203. PubMed ID: 20968389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of ultrasonic waves through demineralized cancellous bone.
    Mohamed MM; Shaat LT; Mahmoud AN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):279-88. PubMed ID: 12699161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of marrow on the high frequency ultrasonic properties of cancellous bone.
    Hoffmeister BK; Auwarter JA; Rho JY
    Phys Med Biol; 2002 Sep; 47(18):3419-27. PubMed ID: 12375829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms.
    Zhang C; Le LH; Zheng R; Ta D; Lou E
    J Acoust Soc Am; 2011 May; 129(5):3317-26. PubMed ID: 21568432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Biot's theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties.
    Pakula M; Padilla F; Laugier P; Kaczmarek M
    J Acoust Soc Am; 2008 Apr; 123(4):2415-23. PubMed ID: 18397044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cancellous bone microstructure on ultrasonic attenuation: a theoretical prediction.
    Liu J; Lan L; Zhou J; Yang Y
    Biomed Eng Online; 2019 Oct; 18(1):103. PubMed ID: 31653267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic assessment of human and bovine trabecular bone: a comparison study.
    Alves JM; Xu W; Lin D; Siffert RS; Ryaby JT; Kaufman JJ
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):249-58. PubMed ID: 8682537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory.
    Williams JL
    J Acoust Soc Am; 1992 Feb; 91(2):1106-12. PubMed ID: 1556311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.