These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10579032)

  • 21. Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus.
    Trebacz H; Natali A
    Osteoporos Int; 1999; 9(2):99-105. PubMed ID: 10367035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.
    Nelson AM; Hoffman JJ; Anderson CC; Holland MR; Nagatani Y; Mizuno K; Matsukawa M; Miller JG
    J Acoust Soc Am; 2011 Oct; 130(4):2233-40. PubMed ID: 21973378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models.
    Leclaire P; Kelders L; Lauriks W; Glorieux C; Thoen J
    Stud Health Technol Inform; 1997; 40():139-55. PubMed ID: 10168875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone.
    Nagatani Y; Tachibana RO
    J Acoust Soc Am; 2014 Mar; 135(3):1197-206. PubMed ID: 24606262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2015 Feb; 137(2):EL194-9. PubMed ID: 25698050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Velocity dispersion of acoustic waves in cancellous bone.
    Droin P; Berger G; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):581-92. PubMed ID: 18244210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):454-482. PubMed ID: 31634127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic wave propagation in bovine cancellous bone: application of the Modified Biot-Attenborough model.
    Lee KI; Roh HS; Yoon SW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2284-93. PubMed ID: 14587625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone.
    Lee KI; Yoon SW
    J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of cancellous bone microstructure on two ultrasonic wave propagations in bovine femur: an in vitro study.
    Mizuno K; Somiya H; Kubo T; Matsukawa M; Otani T; Tsujimoto T
    J Acoust Soc Am; 2010 Nov; 128(5):3181-9. PubMed ID: 21110613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experimental study on the ultrasonic wave propagation in cancellous bone: waveform changes during propagation.
    Fujita F; Mizuno K; Matsukawa M
    J Acoust Soc Am; 2013 Dec; 134(6):4775. PubMed ID: 25669289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory.
    Anderson CC; Bauer AQ; Holland MR; Pakula M; Laugier P; Bretthorst GL; Miller JG
    J Acoust Soc Am; 2010 Nov; 128(5):2940-8. PubMed ID: 21110589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.
    Bossy E; Padilla F; Peyrin F; Laugier P
    Phys Med Biol; 2005 Dec; 50(23):5545-56. PubMed ID: 16306651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasonic propagation in cancellous bone: a new stratified model.
    Hughes ER; Leighton TG; Petley GW; White PR
    Ultrasound Med Biol; 1999 Jun; 25(5):811-21. PubMed ID: 10414898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone.
    Hoffmeister BK; Huber MT; Viano AM; Huang J
    J Acoust Soc Am; 2018 Feb; 143(2):911. PubMed ID: 29495707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Propagation of two longitudinal waves in human cancellous bone: an in vitro study.
    Mizuno K; Matsukawa M; Otani T; Laugier P; Padilla F
    J Acoust Soc Am; 2009 May; 125(5):3460-6. PubMed ID: 19425685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short ultrasonic waves in cancellous bone.
    Kaczmarek M; Kubik J; Pakula M
    Ultrasonics; 2002 May; 40(1-8):95-100. PubMed ID: 12160076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method.
    Yang D
    Rev Sci Instrum; 2021 Dec; 92(12):125108. PubMed ID: 34972452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.