These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 10580120)
1. Factors important for fusogenic activity of peptides: molecular modeling study of analogs of fusion peptide of influenza virus hemagglutinin. Efremov RG; Nolde DE; Volynsky PE; Chernyavsky AA; Dubovskii PV; Arseniev AS FEBS Lett; 1999 Nov; 462(1-2):205-10. PubMed ID: 10580120 [TBL] [Abstract][Full Text] [Related]
2. Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: probing the role of hydrophobic residue size in the central region of the fusion peptide. Han X; Steinhauer DA; Wharton SA; Tamm LK Biochemistry; 1999 Nov; 38(45):15052-9. PubMed ID: 10555988 [TBL] [Abstract][Full Text] [Related]
3. Structural characterizations of fusion peptide analogs of influenza virus hemagglutinin. Implication of the necessity of a helix-hinge-helix motif in fusion activity. Hsu CH; Wu SH; Chang DK; Chen C J Biol Chem; 2002 Jun; 277(25):22725-33. PubMed ID: 11937502 [TBL] [Abstract][Full Text] [Related]
4. Single mutation effects on conformational change and membrane deformation of influenza hemagglutinin fusion peptides. Li J; Das P; Zhou R J Phys Chem B; 2010 Jul; 114(26):8799-806. PubMed ID: 20552971 [TBL] [Abstract][Full Text] [Related]
5. pH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers. Han X; Tamm LK J Mol Biol; 2000 Dec; 304(5):953-65. PubMed ID: 11124039 [TBL] [Abstract][Full Text] [Related]
6. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Han X; Bushweller JH; Cafiso DS; Tamm LK Nat Struct Biol; 2001 Aug; 8(8):715-20. PubMed ID: 11473264 [TBL] [Abstract][Full Text] [Related]
8. Properties and structures of the influenza and HIV fusion peptides on lipid membranes: implications for a role in fusion. Haque ME; Koppaka V; Axelsen PH; Lentz BR Biophys J; 2005 Nov; 89(5):3183-94. PubMed ID: 16183890 [TBL] [Abstract][Full Text] [Related]
9. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. Gray C; Tatulian SA; Wharton SA; Tamm LK Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751 [TBL] [Abstract][Full Text] [Related]
10. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity. Lai AL; Park H; White JM; Tamm LK J Biol Chem; 2006 Mar; 281(9):5760-70. PubMed ID: 16407195 [TBL] [Abstract][Full Text] [Related]
11. Structure and function of membrane fusion peptides. Tamm LK; Han X; Li Y; Lai AL Biopolymers; 2002; 66(4):249-60. PubMed ID: 12491538 [TBL] [Abstract][Full Text] [Related]
13. Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity. Worch R; Dudek A; Borkowska P; Setny P Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069905 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides. Kordyukova L Virus Res; 2017 Jan; 227():183-199. PubMed ID: 27773768 [TBL] [Abstract][Full Text] [Related]
15. Membrane interactions of mutated forms of the influenza fusion peptide. Epand RM; Epand RF; Martin I; Ruysschaert JM Biochemistry; 2001 Jul; 40(30):8800-7. PubMed ID: 11467940 [TBL] [Abstract][Full Text] [Related]
16. The final conformation of the complete ectodomain of the HA2 subunit of influenza hemagglutinin can by itself drive low pH-dependent fusion. Kim CS; Epand RF; Leikina E; Epand RM; Chernomordik LV J Biol Chem; 2011 Apr; 286(15):13226-34. PubMed ID: 21292763 [TBL] [Abstract][Full Text] [Related]