BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 10580291)

  • 41. GABAB receptors modulate a tetanus-induced sustained potentiation of monosynaptic inhibitory transmission in the rat nucleus tractus solitarii in vitro.
    Brooks PA; Glaum SR
    J Auton Nerv Syst; 1995 Jul; 54(1):16-26. PubMed ID: 7594207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Secretin depolarizes nucleus tractus solitarius neurons through activation of a nonselective cationic conductance.
    Yang B; Goulet M; Boismenu R; Ferguson AV
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R927-34. PubMed ID: 14715495
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of spontaneous excitatory transmission induced by codeine is independent on presynaptic K+ channels and novel voltage-dependent Ca2+ channels in the guinea-pig nucleus tractus solitarius.
    Haji A; Ohi Y
    Neuroscience; 2010 Sep; 169(3):1168-77. PubMed ID: 20538042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transient potassium conductances protect nucleus tractus solitarius neurons from NMDA induced excitotoxic plateau depolarizations.
    Yang B; Leveck DE; Ferguson AV
    Brain Res; 2005 Sep; 1056(1):1-9. PubMed ID: 16122718
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro.
    Cherubini E; Herrling PL; Lanfumey L; Stanzione P
    J Physiol; 1988 Jun; 400():677-90. PubMed ID: 3047368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical mediators of spinal inhibition of rat sympathetic neurones on stimulation in the nucleus tractus solitarii.
    Lewis DI; Coote JH
    J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):483-94. PubMed ID: 7473212
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutation in the myelin proteolipid protein gene alters BK and SK channel function in the caudal medulla.
    Mayer CA; Macklin WB; Avishai N; Balan K; Wilson CG; Miller MJ
    Respir Physiol Neurobiol; 2009 Dec; 169(3):303-14. PubMed ID: 19808102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices.
    Zhang L; Spigelman I; Carlen PL
    J Physiol; 1991 Dec; 444():25-49. PubMed ID: 1822551
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synaptic responses of neurons controlling the parotid and von Ebner salivary glands in rats to stimulation of the solitary nucleus and tract.
    Suwabe T; Fukami H; Bradley RM
    J Neurophysiol; 2008 Mar; 99(3):1267-73. PubMed ID: 18199816
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phoenixin influences the excitability of nucleus of the solitary tract neurones, effects which are modified by environmental and glucocorticoid stress.
    Grover HM; Smith PM; Ferguson AV
    J Neuroendocrinol; 2020 Jun; 32(6):e12855. PubMed ID: 32436241
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The noradrenergic inhibition of an apamin-sensitive, small-conductance Ca2+-activated K+ channel in hypothalamic gamma-aminobutyric acid neurons: pharmacology, estrogen sensitivity, and relevance to the control of the reproductive axis.
    Wagner EJ; Rønnekleiv OK; Kelly MJ
    J Pharmacol Exp Ther; 2001 Oct; 299(1):21-30. PubMed ID: 11561059
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hypertension induced by angiotensin II and a high salt diet involves reduced SK current and increased excitability of RVLM projecting PVN neurons.
    Chen QH; Andrade MA; Calderon AS; Toney GM
    J Neurophysiol; 2010 Nov; 104(5):2329-37. PubMed ID: 20719931
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prostaglandin E2 depresses solitary tract-mediated synaptic transmission in the nucleus tractus solitarius.
    Laaris N; Weinreich D
    Neuroscience; 2007 May; 146(2):792-801. PubMed ID: 17367942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Organization of synaptic transmission in the mammalian solitary complex, studied in vitro.
    Champagnat J; Denavit-Saubié M; Grant K; Shen KF
    J Physiol; 1986 Dec; 381():551-73. PubMed ID: 3040963
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Properties of solitary tract neurons receiving inputs from the sub-diaphragmatic vagus nerve.
    Paton JF; Li YW; Deuchars J; Kasparov S
    Neuroscience; 2000; 95(1):141-53. PubMed ID: 10619470
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro.
    Armstrong WE; Smith BN; Tian M
    J Physiol; 1994 Feb; 475(1):115-28. PubMed ID: 8189384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro independent of their circadian rhythm.
    van den Top M; Buijs RM; Ruijter JM; Delagrange P; Spanswick D; Hermes ML
    Neuroscience; 2001; 107(1):99-108. PubMed ID: 11744250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Progesterone reverses the neuronal responses to hypoxia in rat nucleus tractus solitarius in vitro.
    Pascual O; Morin-Surun MP; Barna B; Denavit-Saubié M; Pequignot JM; Champagnat J
    J Physiol; 2002 Oct; 544(2):511-20. PubMed ID: 12381823
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input.
    Schild JH; Khushalani S; Clark JW; Andresen MC; Kunze DL; Yang M
    J Physiol; 1993 Sep; 469():341-63. PubMed ID: 7505824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.