BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10580345)

  • 1. High variability in rabbit bone marrow-derived mesenchymal cell preparations.
    Solchaga LA; Johnstone B; Yoo JU; Goldberg VM; Caplan AI
    Cell Transplant; 1999; 8(5):511-9. PubMed ID: 10580345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.
    Johnstone B; Hering TM; Caplan AI; Goldberg VM; Yoo JU
    Exp Cell Res; 1998 Jan; 238(1):265-72. PubMed ID: 9457080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro.
    Kadiyala S; Young RG; Thiede MA; Bruder SP
    Cell Transplant; 1997; 6(2):125-34. PubMed ID: 9142444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage.
    Solchaga LA; Dennis JE; Goldberg VM; Caplan AI
    J Orthop Res; 1999 Mar; 17(2):205-13. PubMed ID: 10221837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks.
    Goshima J; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1991 Jan; (262):298-311. PubMed ID: 1984928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse.
    Dennis JE; Merriam A; Awadallah A; Yoo JU; Johnstone B; Caplan AI
    J Bone Miner Res; 1999 May; 14(5):700-9. PubMed ID: 10320518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone marrow-derived mesenchymal progenitor cells.
    Johnstone B; Yoo J
    Methods Mol Biol; 2000; 137():313-5. PubMed ID: 10948547
    [No Abstract]   [Full Text] [Related]  

  • 8. Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2Kb-tsA58 transgenic mouse.
    Dennis JE; Caplan AI
    J Cell Physiol; 1996 Jun; 167(3):523-38. PubMed ID: 8655606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections.
    Lazarus HM; Haynesworth SE; Gerson SL; Caplan AI
    J Hematother; 1997 Oct; 6(5):447-55. PubMed ID: 9368181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis.
    Lennon DP; Haynesworth SE; Arm DM; Baber MA; Caplan AI
    Dev Dyn; 2000 Sep; 219(1):50-62. PubMed ID: 10974671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge.
    Angele P; Kujat R; Nerlich M; Yoo J; Goldberg V; Johnstone B
    Tissue Eng; 1999 Dec; 5(6):545-54. PubMed ID: 10611546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials.
    Wang Y; Uemura T; Dong J; Kojima H; Tanaka J; Tateishi T
    Tissue Eng; 2003 Dec; 9(6):1205-14. PubMed ID: 14670108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis.
    Lennon DP; Edmison JM; Caplan AI
    J Cell Physiol; 2001 Jun; 187(3):345-55. PubMed ID: 11319758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion.
    Kai T; Shao-qing G; Geng-ting D
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cells with osteogenic potential from human marrow.
    Haynesworth SE; Goshima J; Goldberg VM; Caplan AI
    Bone; 1992; 13(1):81-8. PubMed ID: 1581112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro.
    Cassiede P; Dennis JE; Ma F; Caplan AI
    J Bone Miner Res; 1996 Sep; 11(9):1264-73. PubMed ID: 8864901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic differentiation of TGF-beta1-responsive pluripotent premesenchymal prehematopoietic progenitor (P4 stem) cells from murine bone marrow.
    Hall FL; Han B; Kundu RK; Yee A; Nimni ME; Gordon EM
    J Hematother Stem Cell Res; 2001 Apr; 10(2):261-71. PubMed ID: 11359673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of porous hydroxyapatite and bone marrow cells for bone regeneration.
    Anselme K; Noël B; Flautre B; Blary MC; Delecourt C; Descamps M; Hardouin P
    Bone; 1999 Aug; 25(2 Suppl):51S-54S. PubMed ID: 10458275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrow-derived mesenchymal progenitor cells.
    Huibregtse BA; Johnstone B; Goldberg VM; Caplan AI
    J Orthop Res; 2000 Jan; 18(1):18-24. PubMed ID: 10716274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.