These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10580723)

  • 1. ERG assessment of zebrafish retinal development.
    Saszik S; Bilotta J; Givin CM
    Vis Neurosci; 1999; 16(5):881-8. PubMed ID: 10580723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. APB differentially affects the cone contributions to the zebrafish ERG.
    Saszik S; Alexander A; Lawrence T; Bilotta J
    Vis Neurosci; 2002; 19(4):521-9. PubMed ID: 12511084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rod contributions to the electroretinogram of the dark-adapted developing zebrafish.
    Bilotta J; Saszik S; Sutherland SE
    Dev Dyn; 2001 Dec; 222(4):564-70. PubMed ID: 11748826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cone contributions to the photopic spectral sensitivity of the zebrafish ERG.
    Hughes A; Saszik S; Bilotta J; Demarco PJ; Patterson WF
    Vis Neurosci; 1998; 15(6):1029-37. PubMed ID: 9839967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constant dark-rearing effects on visual adaptation of the zebrafish ERG.
    Saszik S; Bilotta J
    Int J Dev Neurosci; 2001 Nov; 19(7):611-9. PubMed ID: 11705665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish.
    Cameron DA
    Vis Neurosci; 2002; 19(3):365-72. PubMed ID: 12392184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet- and short-wavelength cone contributions alter the early components of the ERG of young zebrafish.
    Bilotta J; Trace SE; Vukmanic EV; Risner ML
    Int J Dev Neurosci; 2005 Feb; 23(1):15-25. PubMed ID: 15730883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of restricted spectral rearing on the development of zebrafish retinal physiology.
    Dixon LJ; McDowell AL; Houchins JD; Bilotta J
    Doc Ophthalmol; 2004 Jul; 109(1):17-33. PubMed ID: 15675197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of abnormal light-rearing conditions on retinal physiology in larvae zebrafish.
    Saszik S; Bilotta J
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):3026-31. PubMed ID: 10549668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of Dendritic Complexity, Functional Connectivity, and Diversity of Regenerated Retinal Bipolar Neurons in Adult Zebrafish.
    McGinn TE; Mitchell DM; Meighan PC; Partington N; Leoni DC; Jenkins CE; Varnum MD; Stenkamp DL
    J Neurosci; 2018 Jan; 38(1):120-136. PubMed ID: 29133431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of temperature on the dark-adapted spectral sensitivity function of the adult zebrafish.
    Saszik S; Bilotta J
    Vision Res; 1999 Mar; 39(6):1051-8. PubMed ID: 10343824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroretinogram Recording in Larval Zebrafish using A Novel Cone-Shaped Sponge-tip Electrode.
    Xie J; Jusuf PR; Goodbourn PT; Bui BV
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30985748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual processing of the zebrafish optic tectum before and after optic nerve damage.
    McDowell AL; Dixon LJ; Houchins JD; Bilotta J
    Vis Neurosci; 2004; 21(2):97-106. PubMed ID: 15259561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spectral model for signal elements isolated from zebrafish photopic electroretinogram.
    Nelson RF; Singla N
    Vis Neurosci; 2009; 26(4):349-63. PubMed ID: 19723365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opponent and nonopponent contributions to the zebrafish electroretinogram using heterochromatic flicker photometry.
    Patterson WF; McDowell AL; Hughes A; Bilotta J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):283-93. PubMed ID: 12012099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ganglion cells in larval zebrafish retina integrate inputs from multiple cone types.
    Connaughton VP; Nelson R
    J Neurophysiol; 2021 Oct; 126(4):1440-1454. PubMed ID: 34550015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroretinogram analysis of zebrafish retinal function across development.
    Nadolski NJ; Wong CXL; Hocking JC
    Doc Ophthalmol; 2021 Feb; 142(1):99-109. PubMed ID: 32691203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A circadian clock regulates the process of ERG b- and d-wave dominance transition in dark-adapted zebrafish.
    Ren JQ; Li L
    Vision Res; 2004; 44(18):2147-52. PubMed ID: 15183681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lazy eyes zebrafish mutation affects Müller glial cells, compromising photoreceptor function and causing partial blindness.
    Kainz PM; Adolph AR; Wong KY; Dowling JE
    J Comp Neurol; 2003 Aug; 463(3):265-80. PubMed ID: 12820161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral spectral sensitivity of the zebrafish (Danio rerio).
    Risner ML; Lemerise E; Vukmanic EV; Moore A
    Vision Res; 2006 Sep; 46(17):2625-35. PubMed ID: 16564068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.