These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10581124)

  • 1. Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei.
    Peijnenburg WJ; Baerselman R; de Groot AC; Jager T; Posthuma L; Van Veen RP
    Ecotoxicol Environ Saf; 1999 Nov; 44(3):294-310. PubMed ID: 10581124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of metal bioavailability in Dutch field soils for the oligochaete Enchytraeus crypticus.
    Peijnenburg WJ; Posthuma L; Zweers PG; Baerselman R; de Groot AC; Van Veen RP; Jager T
    Ecotoxicol Environ Saf; 1999 Jun; 43(2):170-86. PubMed ID: 10375420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil.
    Smith BA; Egeler P; Gilberg D; Hendershot W; Stephenson GL
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):264-73. PubMed ID: 20130851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils.
    Nahmani J; Hodson ME; Devin S; Vijver MG
    Environ Pollut; 2009 Oct; 157(10):2622-8. PubMed ID: 19482399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal uptake by woodlice in urban soils.
    Gál J; Markiewicz-Patkowska J; Hursthouse A; Tatner P
    Ecotoxicol Environ Saf; 2008 Jan; 69(1):139-49. PubMed ID: 17321593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Cd or Pb addition to Cu-contaminated soil on tissue Cu accumulation in the earthworm, Dendrobaena veneta.
    Marinussen MP; van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):309-15. PubMed ID: 9469885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of heavy metals on enzymatic activity of substrate and on composting worms Eisenia fetida.
    Malley C; Nair J; Ho G
    Bioresour Technol; 2006 Sep; 97(13):1498-502. PubMed ID: 16107315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of heavy metal-contaminated soils using phosphorus: evaluation of bioavailability using an earthworm bioassay.
    Maenpaa KA; Kukkonen JV; Lydy MJ
    Arch Environ Contam Toxicol; 2002 Nov; 43(4):389-98. PubMed ID: 12399909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal concentrations in soil and earthworms in a floodplain grassland.
    van Vliet PC; van der Zee SE; Ma WC
    Environ Pollut; 2005 Dec; 138(3):505-16. PubMed ID: 15951081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels.
    Vandecasteele B; Meers E; Vervaeke P; De Vos B; Quataert P; Tack FM
    Chemosphere; 2005 Feb; 58(8):995-1002. PubMed ID: 15664607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative ultrastructure of metal-sequestering cells reflects intersite and interspecies differences in earthworm metal burdens.
    Morgan AJ; Turner MP
    Arch Environ Contam Toxicol; 2005 Jul; 49(1):45-52. PubMed ID: 15981036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-metal interactions between Cd, Cu, Ni, Pb and Zn in water flea Daphnia magna, a stable isotope experiment.
    Komjarova I; Blust R
    Aquat Toxicol; 2008 Nov; 90(2):138-44. PubMed ID: 18838180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils.
    Vandecasteele B; Du Laing G; Lettens S; Jordaens K; Tack FM
    Environ Pollut; 2010 Jun; 158(6):2181-8. PubMed ID: 20347195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination.
    Hernandez L; Probst A; Probst JL; Ulrich E
    Sci Total Environ; 2003 Aug; 312(1-3):195-219. PubMed ID: 12873411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metals in livers of waterbirds from Spain.
    Mateo R; Guitart R
    Arch Environ Contam Toxicol; 2003 Apr; 44(3):398-404. PubMed ID: 12712301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions.
    Lee SH; Kim EY; Hyun S; Kim JG
    J Hazard Mater; 2009 Oct; 170(1):382-8. PubMed ID: 19540045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account.
    Hobbelen PH; Koolhaas JE; Van Gestel CA
    Environ Pollut; 2004 Jun; 129(3):409-19. PubMed ID: 15016462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.