BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10581152)

  • 1. Dominant negative mutants of guanylyl cyclase: probes for global functions and intramolecular mechanisms.
    Yuen PS
    Methods; 1999 Dec; 19(4):532-44. PubMed ID: 10581152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analyses of mutant recessive GUCY2D alleles identified in Leber congenital amaurosis patients: protein domain comparisons and dominant negative effects.
    Tucker CL; Ramamurthy V; Pina AL; Loyer M; Dharmaraj S; Li Y; Maumenee IH; Hurley JB; Koenekoop RK
    Mol Vis; 2004 Apr; 10():297-303. PubMed ID: 15123990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of a guanylyl cyclase to an adenylyl cyclase.
    Beuve A
    Methods; 1999 Dec; 19(4):545-50. PubMed ID: 10581153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional chimera of mammalian guanylyl and adenylyl cyclases.
    Weitmann S; Würsig N; Navarro JM; Kleuss C
    Biochemistry; 1999 Mar; 38(11):3409-13. PubMed ID: 10079086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and pharmacological characterization of P-site inhibitors on homodimeric guanylyl cyclase domain from natriuretic peptide receptor-A.
    Joubert S; McNicoll N; De Léan A
    Biochem Pharmacol; 2007 Apr; 73(7):954-63. PubMed ID: 17196175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrphostins are inhibitors of guanylyl and adenylyl cyclases.
    Jaleel M; Shenoy AR; Visweswariah SS
    Biochemistry; 2004 Jun; 43(25):8247-55. PubMed ID: 15209521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional chimeras between the catalytic domains of the mycobacterial adenylyl cyclase Rv1625c and a Paramecium guanylyl cyclase.
    Linder JU; Castro LI; Guo YL; Schultz JE
    FEBS Lett; 2004 Jun; 568(1-3):151-4. PubMed ID: 15196937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Guanylyl cyclases of unicellular eukaryotes: structure, function, and regulatory properties].
    Shpakov AO
    Tsitologiia; 2007; 49(8):617-30. PubMed ID: 17926557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particulate guanylyl cyclases: multiple mechanisms of activation.
    Kobiałka M; Gorczyca WA
    Acta Biochim Pol; 2000; 47(3):517-28. PubMed ID: 11310956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of nitric oxide and YC-1 activation of soluble guanylyl cyclase: structural implication for the YC-1 binding site?
    Lamothe M; Chang FJ; Balashova N; Shirokov R; Beuve A
    Biochemistry; 2004 Mar; 43(11):3039-48. PubMed ID: 15023055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guanylyl cyclases with the topology of mammalian adenylyl cyclases and an N-terminal P-type ATPase-like domain in Paramecium, Tetrahymena and Plasmodium.
    Linder JU; Engel P; Reimer A; Krüger T; Plattner H; Schultz A; Schultz JE
    EMBO J; 1999 Aug; 18(15):4222-32. PubMed ID: 10428960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors.
    van den Akker F
    J Mol Biol; 2001 Aug; 311(5):923-37. PubMed ID: 11556325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying the structure and regulation of soluble guanylyl cyclase.
    Koesling D
    Methods; 1999 Dec; 19(4):485-93. PubMed ID: 10581148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new type soluble guanylyl cyclase, which contains a kinase-like domain: its structure and expression.
    Kojima M; Hisaki K; Matsuo H; Kangawa K
    Biochem Biophys Res Commun; 1995 Dec; 217(3):993-1000. PubMed ID: 8554626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted gene disruption in the development of mouse models to elucidate the role of receptor guanylyl cyclase signaling pathways in physiological function.
    Schulz S
    Methods; 1999 Dec; 19(4):551-8. PubMed ID: 10581154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of functional guanylyl cyclases in melanocytes: absence of nitric-oxide-sensitive isoform in metastatic cells.
    Ivanova K; Das PK; van den Wijngaard RM; Lenz W; Klockenbring T; Malcharzyk V; Drummer C; Gerzer R
    J Invest Dermatol; 2001 Mar; 116(3):409-16. PubMed ID: 11231315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel dominant-negative mutant form of Epstein-Barr virus latent membrane protein-1 (LMP1) selectively and differentially impairs LMP1 and TNF signaling pathways.
    Adriaenssens E; Mougel A; Goormachtigh G; Loing E; Fafeur V; Auriault C; Coll J
    Oncogene; 2004 Apr; 23(15):2681-93. PubMed ID: 14767477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis.
    Liu Y; Ruoho AE; Rao VD; Hurley JH
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13414-9. PubMed ID: 9391039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The guanylyl cyclase family at Y2K.
    Wedel B; Garbers D
    Annu Rev Physiol; 2001; 63():215-33. PubMed ID: 11181955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural basis for the role of nucleotide specifying residues in regulating the oligomerization of the Rv1625c adenylyl cyclase from M. tuberculosis.
    Ketkar AD; Shenoy AR; Ramagopal UA; Visweswariah SS; Suguna K
    J Mol Biol; 2006 Mar; 356(4):904-16. PubMed ID: 16403515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.