These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 10581253)
1. Cysteine-scanning mutagenesis provides no evidence for the extracellular accessibility of the nucleotide-binding domains of the multidrug resistance transporter P-glycoprotein. Blott EJ; Higgins CF; Linton KJ EMBO J; 1999 Dec; 18(23):6800-8. PubMed ID: 10581253 [TBL] [Abstract][Full Text] [Related]
2. The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. Ambudkar SV; Kim IW; Xia D; Sauna ZE FEBS Lett; 2006 Feb; 580(4):1049-55. PubMed ID: 16412422 [TBL] [Abstract][Full Text] [Related]
3. Membrane-integration characteristics of two ABC transporters, CFTR and P-glycoprotein. Enquist K; Fransson M; Boekel C; Bengtsson I; Geiger K; Lang L; Pettersson A; Johansson S; von Heijne G; Nilsson I J Mol Biol; 2009 Apr; 387(5):1153-64. PubMed ID: 19236881 [TBL] [Abstract][Full Text] [Related]
4. Structure of the human multidrug resistance protein 1 nucleotide binding domain 1 bound to Mg2+/ATP reveals a non-productive catalytic site. Ramaen O; Leulliot N; Sizun C; Ulryck N; Pamlard O; Lallemand JY; Tilbeurgh Hv; Jacquet E J Mol Biol; 2006 Jun; 359(4):940-9. PubMed ID: 16697012 [TBL] [Abstract][Full Text] [Related]
5. An atomic detail model for the human ATP binding cassette transporter P-glycoprotein derived from disulfide cross-linking and homology modeling. Stenham DR; Campbell JD; Sansom MS; Higgins CF; Kerr ID; Linton KJ FASEB J; 2003 Dec; 17(15):2287-9. PubMed ID: 14563687 [TBL] [Abstract][Full Text] [Related]
6. The conserved tyrosine residues 401 and 1044 in ATP sites of human P-glycoprotein are critical for ATP binding and hydrolysis: evidence for a conserved subdomain, the A-loop in the ATP-binding cassette. Kim IW; Peng XH; Sauna ZE; FitzGerald PC; Xia D; Müller M; Nandigama K; Ambudkar SV Biochemistry; 2006 Jun; 45(24):7605-16. PubMed ID: 16768456 [TBL] [Abstract][Full Text] [Related]
7. Mutagenesis of transmembrane domain 11 of P-glycoprotein by alanine scanning. Hanna M; Brault M; Kwan T; Kast C; Gros P Biochemistry; 1996 Mar; 35(11):3625-35. PubMed ID: 8639515 [TBL] [Abstract][Full Text] [Related]
8. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. Loo TW; Clarke DM J Membr Biol; 2005 Aug; 206(3):173-85. PubMed ID: 16456713 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Jones PM; George AM Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12639-44. PubMed ID: 12237398 [TBL] [Abstract][Full Text] [Related]
10. The extracellular loop between TM5 and TM6 of P-glycoprotein is required for reactivity with monoclonal antibody UIC2. Zhou Y; Gottesman MM; Pastan I Arch Biochem Biophys; 1999 Jul; 367(1):74-80. PubMed ID: 10375401 [TBL] [Abstract][Full Text] [Related]
11. Functional role of the linker region in purified human P-glycoprotein. Sato T; Kodan A; Kimura Y; Ueda K; Nakatsu T; Kato H FEBS J; 2009 Jul; 276(13):3504-16. PubMed ID: 19490125 [TBL] [Abstract][Full Text] [Related]
12. Structure of multidrug-resistance proteins of the ATP-binding cassette (ABC) superfamily. Altenberg GA Curr Med Chem Anticancer Agents; 2004 Jan; 4(1):53-62. PubMed ID: 14754412 [TBL] [Abstract][Full Text] [Related]
13. Structure-based interpretation of the mutagenesis database for the nucleotide binding domains of P-glycoprotein. Lawson J; O'Mara ML; Kerr ID Biochim Biophys Acta; 2008 Feb; 1778(2):376-91. PubMed ID: 18035039 [TBL] [Abstract][Full Text] [Related]
14. Purification and characterization of the N-terminal nucleotide binding domain of an ABC drug transporter of Candida albicans: uncommon cysteine 193 of Walker A is critical for ATP hydrolysis. Jha S; Karnani N; Dhar SK; Mukhopadhayay K; Shukla S; Saini P; Mukhopadhayay G; Prasad R Biochemistry; 2003 Sep; 42(36):10822-32. PubMed ID: 12962507 [TBL] [Abstract][Full Text] [Related]
15. A model for the nucleotide-binding domains of ABC transporters based on the large domain of aspartate aminotransferase. Hoedemaeker FJ; Davidson AR; Rose DR Proteins; 1998 Feb; 30(3):275-86. PubMed ID: 9517543 [TBL] [Abstract][Full Text] [Related]
16. Functional asymmetry of the ATP-binding-cassettes of the ABC transporter TAP is determined by intrinsic properties of the nucleotide binding domains. Daumke O; Knittler MR Eur J Biochem; 2001 Sep; 268(17):4776-86. PubMed ID: 11532014 [TBL] [Abstract][Full Text] [Related]
17. Interaction of transported drugs with the lipid bilayer and P-glycoprotein through a solvation exchange mechanism. Omote H; Al-Shawi MK Biophys J; 2006 Jun; 90(11):4046-59. PubMed ID: 16565061 [TBL] [Abstract][Full Text] [Related]
18. Conformational changes of the bacterial type I ATP-binding cassette importer HisQMP2 at distinct steps of the catalytic cycle. Heuveling J; Frochaux V; Ziomkowska J; Wawrzinek R; Wessig P; Herrmann A; Schneider E Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):106-16. PubMed ID: 24021237 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of the ATP-binding subunit of an ABC transporter. Hung LW; Wang IX; Nikaido K; Liu PQ; Ames GF; Kim SH Nature; 1998 Dec; 396(6712):703-7. PubMed ID: 9872322 [TBL] [Abstract][Full Text] [Related]
20. Mutation of the aromatic amino acid interacting with adenine moiety of ATP to a polar residue alters the properties of multidrug resistance protein 1. Zhao Q; Chang XB J Biol Chem; 2004 Nov; 279(47):48505-12. PubMed ID: 15355964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]