BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 10581398)

  • 1. Dimorphic expression of medial basal hypothalamic-preoptic area calbindin-D(28K) mRNA during perinatal development and adult distribution of calbindin-D(28K) mRNA in Sprague-Dawley rats.
    Stuart E; Lephart ED
    Brain Res Mol Brain Res; 1999 Nov; 73(1-2):60-7. PubMed ID: 10581398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steroid hormone influence on brain calbindin-D(28K) in male prepubertal and ovariectomized rats.
    Stuart EB; Thompson JM; Rhees RW; Lephart ED
    Brain Res Dev Brain Res; 2001 Aug; 129(2):125-33. PubMed ID: 11506857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoestrogens alter hypothalamic calbindin-D28k levels during prenatal development.
    Taylor H; Quintero EM; Iacopino AM; Lephart ED
    Brain Res Dev Brain Res; 1999 May; 114(2):277-81. PubMed ID: 10320769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimorphic expression of calbindin-D28K in the medial basal hypothalamus from perinatal male and female rats.
    Lephart ED
    Brain Res Dev Brain Res; 1996 Oct; 96(1-2):281-4. PubMed ID: 8922690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Androgen-dependent modulation of calbindin-D28K in hypothalamic tissue during prenatal development.
    Watson MA; Taylor H; Lephart ED
    Neurosci Res; 1998 Sep; 32(1):97-101. PubMed ID: 9831256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calbindin-D28k is regulated by adrenal steroids in hypothalamic tissue during prenatal development.
    Lephart ED; Watson MA; Jacobson NA; Rhees RW; Ladle DR
    Brain Res Dev Brain Res; 1997 May; 100(1):117-20. PubMed ID: 9174253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain aromatase cytochrome P-450 messenger RNA levels and enzyme activity during prenatal and perinatal development in the rat.
    Lephart ED; Simpson ER; McPhaul MJ; Kilgore MW; Wilson JD; Ojeda SR
    Brain Res Mol Brain Res; 1992 Dec; 16(3-4):187-92. PubMed ID: 1337928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calretinin and calbindin-D28K in male rats during postnatal development.
    Lephart ED; Taylor H; Jacobson NA; Watson MA
    Neurobiol Aging; 1998; 19(3):253-7. PubMed ID: 9662000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of neural 5 alpha-reductase messenger ribonucleic acid: comparison to 5 alpha-reductase activity during prenatal development in the rat.
    Lephart ED; Andersson S; Simpson ER
    Endocrinology; 1990 Sep; 127(3):1121-8. PubMed ID: 2387251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calbindin-D28k immunoreactivity is a marker for a subdivision of the sexually dimorphic nucleus of the preoptic area of the rat: developmental profile and gonadal steroid modulation.
    Sickel MJ; McCarthy MM
    J Neuroendocrinol; 2000 May; 12(5):397-402. PubMed ID: 10792577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient transcription of the somatostatin gene at the time of estrogen-dependent organization of the sexually dimorphic nucleus of the rat preoptic area.
    Orikasa C; Kondo Y; Sakuma Y
    Endocrinology; 2007 Mar; 148(3):1144-9. PubMed ID: 17138650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maternal separation: hypothalamic-preoptic area and hippocampal calbindin-D28K and calretinin in male and female infantile rats.
    Lephart ED; Watson MA
    Neurosci Lett; 1999 May; 267(1):41-4. PubMed ID: 10400244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perinatal developmental changes in expression of the neuropeptide genes preoptic regulatory factor-1 and factor-2, neuropeptide Y and GnRH in rat hypothalamus.
    Nowak FV; Gore AC
    J Neuroendocrinol; 1999 Dec; 11(12):951-8. PubMed ID: 10583730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoestrogens decrease brain calcium-binding proteins but do not alter hypothalamic androgen metabolizing enzymes in adult male rats.
    Lephart ED; Thompson JM; Setchell KD; Adlercreutz H; Weber KS
    Brain Res; 2000 Mar; 859(1):123-31. PubMed ID: 10720621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential gene expression response to gonadal hormones by preoptic regulatory factors-1 and -2 in the female rat brain.
    Nowak FV; Torres GE; Hu SB
    Neuroendocrinology; 1999 Mar; 69(3):191-201. PubMed ID: 10087451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular profiling of postnatal development of the hypothalamus in female and male rats.
    Walker DM; Kirson D; Perez LF; Gore AC
    Biol Reprod; 2012 Jun; 87(6):129. PubMed ID: 23034157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration in levels of expression of brain calbindin D-28k and calretinin mRNA in genetically epilepsy-prone rats.
    Montpied P; Winsky L; Dailey JW; Jobe PC; Jacobowitz DM
    Epilepsia; 1995 Sep; 36(9):911-21. PubMed ID: 7649131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental expression of calretinin in the medial basal hypothalamus and amygdala from male and female rats.
    Lephart ED; Watson MA; Rhees RW; Ladle DR; Jacobson NA
    Neurosci Res; 1997 Jul; 28(3):269-73. PubMed ID: 9237275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonin promotes feminization of the sexually dimorphic nucleus of the preoptic area, but not the calbindin cell group.
    Madden AM; Paul AT; Pritchard RA; Michel R; Zup SL
    Dev Neurobiol; 2016 Nov; 76(11):1241-1253. PubMed ID: 26899026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progesterone suppression of glutamic acid decarboxylase (GAD67) mRNA levels in the preoptic area: correlation to the luteinizing hormone surge.
    Unda R; Brann DW; Mahesh VB
    Neuroendocrinology; 1995 Dec; 62(6):562-70. PubMed ID: 8751281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.