These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10581968)

  • 21. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    J Biomech; 1993 Jan; 26(1):37-49. PubMed ID: 8423167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A fast alternative to computational fluid dynamics for high quality imaging of blood flow.
    McGregor RH; Szczerbal D; Muralidhar K; Székely G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):124-31. PubMed ID: 20425979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates.
    Karmonik C; Bismuth JX; Davies MG; Lumsden AB
    Technol Health Care; 2008; 16(5):343-54. PubMed ID: 19126973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic enhancement, animation, and segmentation of flow in peripheral arteries from MR phase-shift velocity mapping.
    Mohiaddin RH; Yang GZ; Burger P; Firmin DN; Longmore DB
    J Comput Assist Tomogr; 1992; 16(2):176-81. PubMed ID: 1545013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational blood flow modeling based on in vivo measurements.
    Moore JA; Rutt BK; Karlik SJ; Yin K; Ethier CR
    Ann Biomed Eng; 1999; 27(5):627-40. PubMed ID: 10548332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vector analysis of the wall shear rate at the human aortoiliac bifurcation using cine MR velocity mapping.
    Tsuji T; Suzuki J; Shimamoto R; Yamazaki T; Nakajima T; Nagai R; Komatsu S; Ohtomo K; Toyo-Oka T; Omata M
    AJR Am J Roentgenol; 2002 Apr; 178(4):995-9. PubMed ID: 11906890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: a combined MR and CFD study.
    Torii R; Keegan J; Wood NB; Dowsey AW; Hughes AD; Yang GZ; Firmin DN; Mcg Thom SA; Xu XY
    Br J Radiol; 2009 Jan; 82 Spec No 1():S24-32. PubMed ID: 20348532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.
    Karmonik C; Klucznik R; Benndorf G
    Rofo; 2008 Mar; 180(3):209-15. PubMed ID: 18278729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variability of the planarity of the human aortic bifurcation.
    Friedman MH; Ding Z
    Med Eng Phys; 1998 Sep; 20(6):469-72. PubMed ID: 9796953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance imaging-based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial disease.
    Hossain SS; Zhang Y; Fu X; Brunner G; Singh J; Hughes TJ; Shah D; Decuzzi P
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25878124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics.
    Yim P; Demarco K; Castro MA; Cebral J
    Stud Health Technol Inform; 2005; 113():412-42. PubMed ID: 15923751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of non-Newtonian effects within an aorta-iliac bifurcation region.
    Iasiello M; Vafai K; Andreozzi A; Bianco N
    J Biomech; 2017 Nov; 64():153-163. PubMed ID: 29100596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geometric variability of the abdominal aorta and its major peripheral branches.
    O'Flynn PM; O'Sullivan G; Pandit AS
    Ann Biomed Eng; 2010 Mar; 38(3):824-40. PubMed ID: 20087766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm.
    Boutsianis E; Guala M; Olgac U; Wildermuth S; Hoyer K; Ventikos Y; Poulikakos D
    J Biomech Eng; 2009 Jan; 131(1):011008. PubMed ID: 19045924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calculation of the magnetization distribution for fluid flow in curved vessels.
    Jou LD; van Tyen R; Berger SA; Saloner D
    Magn Reson Med; 1996 Apr; 35(4):577-84. PubMed ID: 8992209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics.
    Tse KM; Chang R; Lee HP; Lim SP; Venkatesh SK; Ho P
    Eur J Cardiothorac Surg; 2013 Apr; 43(4):829-38. PubMed ID: 22766960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.