These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 10582223)
41. Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Nelson R; Kolb H Vision Res; 1983; 23(10):1183-95. PubMed ID: 6649437 [TBL] [Abstract][Full Text] [Related]
42. Light- and electron-microscopic study of electrophysiologically characterized neurons in the mediolateral part of the lateral spetum of the guinea-pig. Doutrelant O; Poulain P; Carette B; Beauvillain JC Cell Tissue Res; 1994 Mar; 275(3):543-53. PubMed ID: 8137401 [TBL] [Abstract][Full Text] [Related]
43. Electron microscopic identification of axon terminals of retinopretectal fibers in the cat by a combined horseradish peroxidase and tritiated amino acids tracing method. Nakamura Y; Mizuno N; Konishi A Brain Res; 1981 May; 212(1):127-30. PubMed ID: 7225848 [TBL] [Abstract][Full Text] [Related]
44. Innervation of capillaries by local neurons in the cat hypothalamus: a light microscopic study with horseradish peroxidase. Rennels ML; Gregory TF; Fujimoto K J Cereb Blood Flow Metab; 1983 Dec; 3(4):535-42. PubMed ID: 6630324 [TBL] [Abstract][Full Text] [Related]
45. Morphology and electrophysiology of superior laryngeal nerve afferents and postsynaptic neurons in the medulla oblongata of the cat. Bellingham MC; Lipski J Neuroscience; 1992; 48(1):205-16. PubMed ID: 1374862 [TBL] [Abstract][Full Text] [Related]
46. Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation. Freund TF; Martin KA; Somogyi P; Whitteridge D J Comp Neurol; 1985 Dec; 242(2):275-91. PubMed ID: 2418072 [TBL] [Abstract][Full Text] [Related]
47. The location of spinal neurons with long descending axons (long descending propriospinal tract neurons) in the cat: a study with the horseradish peroxidase technique. Matsushita M; Ikeda M; Hosoya Y J Comp Neurol; 1979 Mar; 184(1):63-80. PubMed ID: 84003 [TBL] [Abstract][Full Text] [Related]
48. The section-Golgi impregnation procedure. 1. Description of the method and its combination with histochemistry after intracellular iontophoresis or retrograde transport of horseradish peroxidase. Freund TF; Somogyi P Neuroscience; 1983 Jul; 9(3):463-74. PubMed ID: 6194474 [TBL] [Abstract][Full Text] [Related]
49. Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Oliver DL Neuroscience; 1984 Feb; 11(2):409-24. PubMed ID: 6201779 [TBL] [Abstract][Full Text] [Related]
50. Optic terminals form axosomatic synapses with deep tectal neurons in Bufo marinus. Gábriel R; Straznicky C Neurobiology (Bp); 1993; 1(4):313-25. PubMed ID: 8069289 [TBL] [Abstract][Full Text] [Related]
51. Direct projections from the cerebellar fastigial nucleus to the thalamic suprageniculate nucleus in the cat studied with the anterograde and retrograde axonal transport of wheat germ agglutinin-horseradish peroxidase. Katoh YY; Deura S Brain Res; 1993 Jul; 617(1):155-8. PubMed ID: 7690666 [TBL] [Abstract][Full Text] [Related]
52. The uptake of horseradish peroxidase by neuronal elements within the guinea-pig distal colon and its subsequent retrograde transport to the inferior mesenteric ganglion: an in vitro study using an intact neuronal system. Anderson PN; Mitchell J; Mayor D J Anat; 1980 Jan; 130(Pt 1):153-7. PubMed ID: 6154029 [TBL] [Abstract][Full Text] [Related]
53. The islands of Calleja: organization and connections. Fallon JH; Riley JN; Sipe JC; Moore RY J Comp Neurol; 1978 Sep; 181(2):375-95. PubMed ID: 80412 [TBL] [Abstract][Full Text] [Related]
54. Synaptic circuitry identified by intracellular labeling with horseradish peroxidase. Hamos JE J Electron Microsc Tech; 1990 Aug; 15(4):369-76. PubMed ID: 2202794 [TBL] [Abstract][Full Text] [Related]
55. Cortico-Darkschewitsch-olivary projection in the cat: an electron microscope study with the aid of horseradish peroxidase tracing technique. Nakamura Y; Kitao Y; Okoyama S Brain Res; 1983 Sep; 274(1):140-3. PubMed ID: 6616251 [TBL] [Abstract][Full Text] [Related]
56. Accommodation motor neurons in the foveate teleost Paralabrax clathratus: horseradish peroxidase labeling and axonal morphometry, with comparisons to other ciliary nerve components. Wathey JC Brain Behav Evol; 1988; 32(1):1-16. PubMed ID: 3191380 [TBL] [Abstract][Full Text] [Related]
57. Lumbosacral spinal neurons in the cat that are candidates for being activated by collaterals from the spinocervical tract. Cao CQ; Djouhri L; Brown AG Neuroscience; 1993 Nov; 57(1):153-65. PubMed ID: 8278049 [TBL] [Abstract][Full Text] [Related]
58. An ultrastructural study of the synaptic contacts of alpha 1-motoneuron axon collaterals. II. Contacts in lamina VII. Lagerbäck PA; Ronnevi LO; Cullheim S; Kellerth JO Brain Res; 1981 Oct; 222(1):29-41. PubMed ID: 6170388 [TBL] [Abstract][Full Text] [Related]
59. Peroxidase activity at CNS nodes of Ranvier and in initial axon segments of lumbosacral alpha-motoneurons after intramuscular administration of horseradish peroxidase. Berthold CH; Corneliuson O; Mellström A Brain Res; 1988 Jul; 456(2):293-301. PubMed ID: 2463036 [TBL] [Abstract][Full Text] [Related]
60. Further contributions about the use of the horseradish peroxidase (HRP) in the ultrastructural study of the olivary neurons of cat. Gazzanelli G; Osculati F; Amati S; Franceschini F; Petrini E Boll Soc Ital Biol Sper; 1980 May; 56(10):1090-6. PubMed ID: 7448012 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]