These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10582417)

  • 21. Concentric-needle versus macro EMG. II. Detection of neuromuscular disorders.
    Finsterer J; Fuglsang-Frederiksen A
    Clin Neurophysiol; 2001 May; 112(5):853-60. PubMed ID: 11336901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient parameterization of MUAP signal for identification of MU and volume conductor characteristics using neural networks.
    Reffad A; Bekka RE; Mebarkia K; Chikouche D
    J Neurosci Methods; 2007 Aug; 164(2):325-38. PubMed ID: 17544153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of a neural network system in the identification of motor unit characteristics from surface detected action potentials: a simulation study.
    Bekka RE; Boudaoud S; Chikouche D
    J Neurosci Methods; 2002 Apr; 116(1):89-98. PubMed ID: 12007986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating motor-unit architectural properties by analyzing motor-unit action potential morphology.
    Lateva ZC; McGill KC
    Clin Neurophysiol; 2001 Jan; 112(1):127-35. PubMed ID: 11137670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A two-stage method for MUAP classification based on EMG decomposition.
    Katsis CD; Exarchos TP; Papaloukas C; Goletsis Y; Fotiadis DI; Sarmas I
    Comput Biol Med; 2007 Sep; 37(9):1232-40. PubMed ID: 17208215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Averaging methods for extracting representative waveforms from motor unit action potential trains.
    Malanda A; Navallas J; Rodriguez-Falces J; Rodriguez-Carreño I; Gila L
    J Electromyogr Kinesiol; 2015 Aug; 25(4):581-95. PubMed ID: 25962870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification of EMG signals using wavelet neural network.
    Subasi A; Yilmaz M; Ozcalik HR
    J Neurosci Methods; 2006 Sep; 156(1-2):360-7. PubMed ID: 16621003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simulation study on the relation between the motor unit depth and action potential from multi-channel surface electromyography recordings.
    He J; Luo Z
    J Clin Neurosci; 2018 Aug; 54():146-151. PubMed ID: 29805080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macro-EMG and motor unit recruitment threshold: differences between the young and the aged.
    Masakado Y; Noda Y; Nagata MA; Kimura A; Chino N; Akaboshi K
    Neurosci Lett; 1994 Sep; 179(1-2):1-4. PubMed ID: 7845601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The synthesis of EMG signals based on considerations of signal spectra.
    Gammans P; Qin SF; Wright DK
    Biomed Sci Instrum; 2003; 39():187-92. PubMed ID: 12724892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing and standardizing quantitative EMG.
    Brownell AA; Bromberg MB
    Suppl Clin Neurophysiol; 2009; 60():263-9. PubMed ID: 20715388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of recording site on extracted features of motor unit action potential.
    Artuğ NT; Goker I; Bolat B; Osman O; Kocasoy Orhan E; Baslo MB
    Comput Methods Programs Biomed; 2016 Jun; 129():172-85. PubMed ID: 26817404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor unit potential change with contraction level: a concentric macro electromyography study.
    Jabre JF; Guan Y; Chui KK
    Muscle Nerve; 2013 Oct; 48(4):551-6. PubMed ID: 23861219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue-related changes in motor unit action potentials of adult cats.
    Enoka RM; Trayanova N; Laouris Y; Bevan L; Reinking RM; Stuart DG
    Muscle Nerve; 1992 Feb; 15(2):138-50. PubMed ID: 1549136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of the motor unit action potential morphology (MUAP) on the EMG signal: theoretical and experimental study.
    Figini MM; Fabbro M; Barbieri S; Valli G
    Int J Biomed Comput; 1981 Nov; 12(6):471-82. PubMed ID: 6274808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of three quantitative motor unit analysis algorithms.
    McGill KC
    Suppl Clin Neurophysiol; 2009; 60():273-8. PubMed ID: 20715389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The application of independent component analysis to the multi-channel surface electromyographic signals for separation of motor unit action potential trains: part I-measuring techniques.
    Nakamura H; Yoshida M; Kotani M; Akazawa K; Moritani T
    J Electromyogr Kinesiol; 2004 Aug; 14(4):423-32. PubMed ID: 15165592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal transformation of multiunit activity improves identification of single motor units.
    Schalk G; Carp JS; Wolpaw JR
    J Neurosci Methods; 2002 Feb; 114(1):87-98. PubMed ID: 11850043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic transcranial stimulation in healthy humans: influence on the behavior of upper limb motor units.
    Rossini PM; Caramia MD; Iani C; Desiato MT; Sciarretta G; Bernardi G
    Brain Res; 1995 Apr; 676(2):314-24. PubMed ID: 7614001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skill and selection bias has least influence on motor unit action potential firing rate/frequency.
    Chu J; Takehara I; Li TC; Schwartz I
    Electromyogr Clin Neurophysiol; 2003; 43(7):387-92. PubMed ID: 14626717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.