BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10582564)

  • 1. Determining working memory from ERP topography.
    Löw A; Rockstroh B; Cohen R; Hauk O; Berg P; Maier W
    Brain Topogr; 1999; 12(1):39-47. PubMed ID: 10582564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Event-related potentials in a working-memory task in schizophrenics and controls.
    Löw A; Rockstroh B; Harsch S; Berg P; Cohen R
    Schizophr Res; 2000 Dec; 46(2-3):175-86. PubMed ID: 11120429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain potentials distinguish new and studied objects during working memory.
    Guo C; Lawson AL; Zhang Q; Jiang Y
    Hum Brain Mapp; 2008 Apr; 29(4):441-52. PubMed ID: 17497630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of increased working memory load on semantic neural systems: a high-resolution event-related brain potential study.
    D'Arcy RC; Service E; Connolly JF; Hawco CS
    Brain Res Cogn Brain Res; 2005 Feb; 22(2):177-91. PubMed ID: 15653292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grapheme monitoring in picture naming: an electrophysiological study of language production.
    Hauk O; Rockstroh B; Eulitz C
    Brain Topogr; 2001; 14(1):3-13. PubMed ID: 11599531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained maintenance of somatotopic information in brain regions recruited by tactile working memory.
    Katus T; Müller MM; Eimer M
    J Neurosci; 2015 Jan; 35(4):1390-5. PubMed ID: 25632117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Event-related potentials reveal topographical and temporal distinct neuronal activation patterns for spatial and object working memory.
    Mecklinger A; Pfeifer E
    Brain Res Cogn Brain Res; 1996 Oct; 4(3):211-24. PubMed ID: 8924049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stage and load effects on ERP topography during verbal and spatial working memory.
    Shucard JL; Tekok-Kilic A; Shiels K; Shucard DW
    Brain Res; 2009 Feb; 1254():49-62. PubMed ID: 19083994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty.
    Dong S; Reder LM; Yao Y; Liu Y; Chen F
    Brain Res; 2015 Aug; 1616():146-56. PubMed ID: 25976774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution evoked potential imaging of the cortical dynamics of human working memory.
    Gevins A; Smith ME; Le J; Leong H; Bennett J; Martin N; McEvoy L; Du R; Whitfield S
    Electroencephalogr Clin Neurophysiol; 1996 Apr; 98(4):327-48. PubMed ID: 8641154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural activities of tactile cross-modal working memory in humans: an event-related potential study.
    Ohara S; Wang L; Ku Y; Lenz FA; Hsiao SS; Hong B; Zhou YD
    Neuroscience; 2008 Mar; 152(3):692-702. PubMed ID: 18304742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of concurrent working memory load on distractor and conflict processing in a name-face Stroop task.
    Jongen EM; Jonkman LM
    Psychophysiology; 2011 Jan; 48(1):31-43. PubMed ID: 20525010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of event-related potentials and positron emission tomography activation during a paired-associate memory paradigm.
    Honda M; Barrett G; Yoshimura N; Sadato N; Yonekura Y; Shibasaki H
    Exp Brain Res; 1998 Mar; 119(1):103-15. PubMed ID: 9521541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm.
    SanMiguel I; Corral MJ; Escera C
    J Cogn Neurosci; 2008 Jul; 20(7):1131-45. PubMed ID: 18284343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual working memory load disrupts the space-based attentional guidance of target selection.
    Berggren N; Eimer M
    Br J Psychol; 2019 May; 110(2):357-371. PubMed ID: 29943810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal dynamics of component processes in human working memory.
    Gevins A; Cutillo B
    Electroencephalogr Clin Neurophysiol; 1993 Sep; 87(3):128-43. PubMed ID: 7691540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of memory load and stimulus relevance on the EEG during a visual selective memory search task: an ERP and ERD/ERS study.
    Gomarus HK; Althaus M; Wijers AA; Minderaa RB
    Clin Neurophysiol; 2006 Apr; 117(4):871-84. PubMed ID: 16442346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateralized delay period activity marks the focus of spatial attention in working memory: evidence from somatosensory event-related brain potentials.
    Katus T; Eimer M
    J Neurosci; 2015 Apr; 35(17):6689-95. PubMed ID: 25926447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm.
    Bares M; Rektor I; Kanovský P; Streitová H
    Clin Neurophysiol; 2003 Dec; 114(12):2447-60. PubMed ID: 14652105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.