These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 10582566)

  • 1. Fuzzy segmentation spatiotemporal patterns of cognitive potential into microstates.
    Zhou S; Wang C; Wei J; Wu S
    Brain Topogr; 1999; 12(1):61-7. PubMed ID: 10582566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal analysis of ERP during chinese idiom comprehension.
    Zhou S; Zhou W; Chen X
    Brain Topogr; 2004; 17(1):27-37. PubMed ID: 15669753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal course of cognitive control in a picture-word interference task.
    Xiao X; Zhang Q; Jia L; Zhang Y; Luo J
    Neuroreport; 2010 Jan; 21(2):104-7. PubMed ID: 19952966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrophysiological investigation of preparatory attentional control in a spatial Stroop task.
    Stern ER; Mangels JA
    J Cogn Neurosci; 2006 Jun; 18(6):1004-17. PubMed ID: 16839306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Li L; Yao D; Yin G
    Brain Res; 2009 Jul; 1282():84-94. PubMed ID: 19501069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Event-related potentials and oscillatory brain responses associated with semantic and Stroop-like interference effects in overt naming.
    Piai V; Roelofs A; van der Meij R
    Brain Res; 2012 Apr; 1450():87-101. PubMed ID: 22424790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ERP investigation of the Stroop task: the role of the cingulate in attentional allocation and conflict resolution.
    Badzakova-Trajkov G; Barnett KJ; Waldie KE; Kirk IJ
    Brain Res; 2009 Feb; 1253():139-48. PubMed ID: 19084509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Spatiotemporal pattern analysis of event-related potentials elicited by emotional Stroop task].
    Liu Q; Liu L; He H; Zhou S
    Nan Fang Yi Ke Da Xue Xue Bao; 2007 May; 27(5):608-10. PubMed ID: 17545068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-related potential measures of processing during an Implicit Association Test.
    Coates MA; Campbell KB
    Neuroreport; 2010 Nov; 21(16):1029-33. PubMed ID: 20838349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal generator patterns at scalp elicited by lateralized aversive pictures reveal consecutive stages of motivated attention.
    Kayser J; Tenke CE; Abraham KS; Alschuler DM; Alvarenga JE; Skipper J; Warner V; Bruder GE; Weissman MM
    Neuroimage; 2016 Nov; 142():337-350. PubMed ID: 27263509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dissociation of neural circuits in a Stroop task.
    Xiao X; Qiu J; Zhang Q
    Neuroreport; 2009 May; 20(7):674-8. PubMed ID: 19349920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological evidence for temporal dissociation between spatial attention and sensory competition during human face processing.
    Jacques C; Rossion B
    Cereb Cortex; 2007 May; 17(5):1055-65. PubMed ID: 16772314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Audio-visual synchrony and spatial attention enhance processing of dynamic visual stimulation independently and in parallel: A frequency-tagging study.
    Covic A; Keitel C; Porcu E; Schröger E; Müller MM
    Neuroimage; 2017 Nov; 161():32-42. PubMed ID: 28802870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping.
    Hopf JM; Mangun GR
    Clin Neurophysiol; 2000 Jul; 111(7):1241-57. PubMed ID: 10880800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
    Barnhardt J; Ritter W; Gomes H
    Neuropsychologia; 2008; 46(7):2071-8. PubMed ID: 18355882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new algorithm for spatiotemporal analysis of brain functional connectivity.
    Mheich A; Hassan M; Khalil M; Berrou C; Wendling F
    J Neurosci Methods; 2015 Mar; 242():77-81. PubMed ID: 25583381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Event-related potential correlates of the interaction between attention and spatiotemporal context regularity in vision.
    Pollux PM; Hall S; Roebuck H; Guo K
    Neuroscience; 2011 Sep; 190():258-69. PubMed ID: 21664952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ERP study of the temporal course of the Stroop color-word interference effect.
    Liotti M; Woldorff MG; Perez R; Mayberg HS
    Neuropsychologia; 2000; 38(5):701-11. PubMed ID: 10689046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. fMRI-constrained source analysis reveals early top-down modulations of interference processing using a flanker task.
    Siemann J; Herrmann M; Galashan D
    Neuroimage; 2016 Aug; 136():45-56. PubMed ID: 27181762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.