BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 10582709)

  • 1. Identification of breast cancer cell line-derived paracrine factors that stimulate osteoclast activity.
    Pederson L; Winding B; Foged NT; Spelsberg TC; Oursler MJ
    Cancer Res; 1999 Nov; 59(22):5849-55. PubMed ID: 10582709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of breast cancer cell lines to stimulate bone resorbing activity of mature osteoclasts correlates with an anti-apoptotic effect mediated by macrophage colony stimulating factor.
    Gallet M; Mentaverri R; Sévenet N; Brazier M; Kamel S
    Apoptosis; 2006 Nov; 11(11):1909-21. PubMed ID: 16927019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular mechanisms of bone resorption in breast carcinoma.
    Hunt NC; Fujikawa Y; Sabokbar A; Itonaga I; Harris A; Athanasou NA
    Br J Cancer; 2001 Jul; 85(1):78-84. PubMed ID: 11437406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breast cancer increases osteoclastogenesis by secreting M-CSF and upregulating RANKL in stromal cells.
    Mancino AT; Klimberg VS; Yamamoto M; Manolagas SC; Abe E
    J Surg Res; 2001 Sep; 100(1):18-24. PubMed ID: 11516200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IL-6, LIF, and TNF-alpha regulation of GM-CSF inhibition of osteoclastogenesis in vitro.
    Gorny G; Shaw A; Oursler MJ
    Exp Cell Res; 2004 Mar; 294(1):149-58. PubMed ID: 14980510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway.
    Bendre MS; Margulies AG; Walser B; Akel NS; Bhattacharrya S; Skinner RA; Swain F; Ramani V; Mohammad KS; Wessner LL; Martinez A; Guise TA; Chirgwin JM; Gaddy D; Suva LJ
    Cancer Res; 2005 Dec; 65(23):11001-9. PubMed ID: 16322249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breast cancer cell line MDA-MB 231 exerts a potent and direct anti-apoptotic effect on mature osteoclasts.
    Gallet M; Sévenet N; Dupont C; Brazier M; Kamel S
    Biochem Biophys Res Commun; 2004 Jun; 319(2):690-6. PubMed ID: 15178461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells.
    Sierra A; Price JE; García-Ramirez M; Méndez O; López L; Fabra A
    Lab Invest; 1997 Oct; 77(4):357-68. PubMed ID: 9354770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption.
    Neale SD; Sabokbar A; Howie DW; Murray DW; Athanasou NA
    J Orthop Res; 1999 Sep; 17(5):686-94. PubMed ID: 10569477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone marrow cells produce soluble factors that inhibit osteoclast activity.
    Ninomiya JT; Bi Y; Banks MA; Lavish SA; Goldberg VM; Greenfield EM
    J Orthop Res; 1999 Jan; 17(1):51-8. PubMed ID: 10073647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro.
    Pfeilschifter J; Chenu C; Bird A; Mundy GR; Roodman GD
    J Bone Miner Res; 1989 Feb; 4(1):113-8. PubMed ID: 2785743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of beta-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures.
    Uchiyama S; Yamaguchi M
    Biochem Pharmacol; 2004 Apr; 67(7):1297-305. PubMed ID: 15013845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression of transforming growth factor-beta 1 and its type II receptor in giant cell tumors of bone. Possible involvement in osteoclast-like cell migration.
    Zheng MH; Fan Y; Wysocki SJ; Lau AT; Robertson T; Beilharz M; Wood DJ; Papadimitriou JM
    Am J Pathol; 1994 Nov; 145(5):1095-104. PubMed ID: 7977641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha.
    Dai SM; Nishioka K; Yudoh K
    Ann Rheum Dis; 2004 Nov; 63(11):1379-86. PubMed ID: 15479886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoclast synthesis and secretion and activation of latent transforming growth factor beta.
    Oursler MJ
    J Bone Miner Res; 1994 Apr; 9(4):443-52. PubMed ID: 8030431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast cancer cells inhibit spontaneous and bisphosphonate-induced osteoclast apoptosis.
    Hussein O; Tiedemann K; Komarova SV
    Bone; 2011 Feb; 48(2):202-11. PubMed ID: 20849994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor-beta induces osteoclast ruffling and chemotaxis: potential role in osteoclast recruitment.
    Pilkington MF; Sims SM; Dixon SJ
    J Bone Miner Res; 2001 Jul; 16(7):1237-47. PubMed ID: 11450699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity.
    El Hajj Dib I; Gallet M; Mentaverri R; Sévenet N; Brazier M; Kamel S
    Eur J Pharmacol; 2006 Dec; 551(1-3):27-33. PubMed ID: 17049513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity.
    Kanatani M; Sugimoto T; Kano J; Kanzawa M; Chihara K
    J Cell Physiol; 2003 Jul; 196(1):180-9. PubMed ID: 12767054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of human lymphocyte-conditioned medium on MG-63 human osteosarcoma cell function.
    Stock JL; Coderre JA; DeVito WJ; Baker S
    Cytokine; 1998 Aug; 10(8):603-12. PubMed ID: 9722933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.