BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 10583367)

  • 1. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Aug; 263(3):671-85. PubMed ID: 10469130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The responses of rat hepatocytes to glucagon and adrenaline. Application of quantified elasticity analysis.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Nov; 265(3):1043-55. PubMed ID: 10518800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of respiration and oxidative phosphorylation in isolated rat liver cells.
    Brown GC; Lakin-Thomas PL; Brand MD
    Eur J Biochem; 1990 Sep; 192(2):355-62. PubMed ID: 2209591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes.
    Brand MD; Harper ME; Taylor HC
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):739-48. PubMed ID: 8489502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions.
    Harper ME; Brand MD
    Can J Physiol Pharmacol; 1994 Aug; 72(8):899-908. PubMed ID: 7834578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes.
    Harper ME; Monemdjou S; Ramsey JJ; Weindruch R
    Am J Physiol; 1998 Aug; 275(2):E197-206. PubMed ID: 9688619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of oxidative phosphorylation, gluconeogenesis, ureagenesis and ATP turnover in isolated perfused rat liver analyzed by top-down metabolic control analysis.
    Soboll S; Oh MH; Brown GC
    Eur J Biochem; 1998 May; 254(1):194-201. PubMed ID: 9652414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down control analysis of temperature effect on oxidative phosphorylation.
    Dufour S; Rousse N; Canioni P; Diolez P
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):743-51. PubMed ID: 8615765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status.
    Harper ME; Brand MD
    J Biol Chem; 1993 Jul; 268(20):14850-60. PubMed ID: 8392060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria.
    Wanders RJ; Groen AK; Van Roermund CW; Tager JM
    Eur J Biochem; 1984 Jul; 142(2):417-24. PubMed ID: 6086353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of tamoxifen on gluconeogenesis and glycolysis in the perfused rat liver.
    Marek CB; Peralta RM; Itinose AM; Bracht A
    Chem Biol Interact; 2011 Aug; 193(1):22-33. PubMed ID: 21570382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Energy metabolism of isolated hepatocytes at various levels of oxidative phosphorylation uncoupling].
    Toshchakov VIu; Morozova GI; Anishchenko NA
    Biokhimiia; 1991 Dec; 56(12):2131-9. PubMed ID: 1839659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical studies on the control of the oxidative phosphorylation system.
    Korzeniewski B; Froncisz W
    Biochim Biophys Acta; 1992 Aug; 1102(1):67-75. PubMed ID: 1324730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.