BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10583425)

  • 1. Complement activation by oxidatively modified low-density lipoproteins.
    Wieland E; Dorweiler B; Bonitz U; Lieser S; Walev I; Bhakdi S
    Eur J Clin Invest; 1999 Oct; 29(10):835-41. PubMed ID: 10583425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the pathogenesis of atherosclerosis: enzymatic transformation of human low density lipoprotein to an atherogenic moiety.
    Bhakdi S; Dorweiler B; Kirchmann R; Torzewski J; Weise E; Tranum-Jensen J; Walev I; Wieland E
    J Exp Med; 1995 Dec; 182(6):1959-71. PubMed ID: 7500042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of atheroma liposomes and malondialdehyde-modified low-density lipoproteins in complement activation.
    Sorace JM; Rollins S; Aniagolu JU; Mergner WJ; Cole K; Swartz GM; Green SJ
    Pathobiology; 1996; 64(2):73-8. PubMed ID: 8888272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative hypothesis of atherogenesis.
    Klatt P; Esterbauer H
    J Cardiovasc Risk; 1996 Aug; 3(4):346-51. PubMed ID: 8946263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man.
    Ylä-Herttuala S; Palinski W; Rosenfeld ME; Parthasarathy S; Carew TE; Butler S; Witztum JL; Steinberg D
    J Clin Invest; 1989 Oct; 84(4):1086-95. PubMed ID: 2794046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific recognition of malondialdehyde and malondialdehyde acetaldehyde adducts on oxidized LDL and apoptotic cells by complement anaphylatoxin C3a.
    Veneskoski M; Turunen SP; Kummu O; Nissinen A; Rannikko S; Levonen AL; Hörkkö S
    Free Radic Biol Med; 2011 Aug; 51(4):834-43. PubMed ID: 21683785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible protective role for C-reactive protein in atherogenesis: complement activation by modified lipoproteins halts before detrimental terminal sequence.
    Bhakdi S; Torzewski M; Paprotka K; Schmitt S; Barsoom H; Suriyaphol P; Han SR; Lackner KJ; Husmann M
    Circulation; 2004 Apr; 109(15):1870-6. PubMed ID: 15037531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions.
    Seifert PS; Hugo F; Tranum-Jensen J; Zâhringer U; Muhly M; Bhakdi S
    J Exp Med; 1990 Aug; 172(2):547-57. PubMed ID: 2373993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [An alternative hypothesis of the pathogenesis of atherosclerosis].
    Bhakdi S
    Herz; 1998 May; 23(3):163-7. PubMed ID: 9646097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of low density lipoproteins in the pathogenesis of atherosclerosis.
    Holvoet P; Collen D
    Atherosclerosis; 1998 Apr; 137 Suppl():S33-8. PubMed ID: 9694539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical demonstration of enzymatically modified human LDL and its colocalization with the terminal complement complex in the early atherosclerotic lesion.
    Torzewski M; Klouche M; Hock J; Messner M; Dorweiler B; Torzewski J; Gabbert HE; Bhakdi S
    Arterioscler Thromb Vasc Biol; 1998 Mar; 18(3):369-78. PubMed ID: 9514405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of hypochlorite-modified proteins in human atherosclerotic lesions.
    Hazell LJ; Arnold L; Flowers D; Waeg G; Malle E; Stocker R
    J Clin Invest; 1996 Mar; 97(6):1535-44. PubMed ID: 8617887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions.
    Napoli C; D'Armiento FP; Mancini FP; Postiglione A; Witztum JL; Palumbo G; Palinski W
    J Clin Invest; 1997 Dec; 100(11):2680-90. PubMed ID: 9389731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complement and atherogenesis: the unknown connection.
    Bhakdi S
    Ann Med; 1998 Dec; 30(6):503-7. PubMed ID: 9920350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of lipoproteins and atherosclerosis.
    Luc G; Fruchart JC
    Am J Clin Nutr; 1991 Jan; 53(1 Suppl):206S-209S. PubMed ID: 1985389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative modifications of LDL increase its binding to extracellular matrix from human aortic intima: influence of lesion development, lipoprotein lipase and calcium.
    Wang X; Greilberger J; Ratschek M; Jürgens G
    J Pathol; 2001 Sep; 195(2):244-50. PubMed ID: 11592105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radical modification of lipoproteins and cholesterol accumulation in cells upon atherosclerosis.
    Panasenko OM; Vol'nova TV; Azizova OA; Vladimirov YA
    Free Radic Biol Med; 1991; 10(2):137-48. PubMed ID: 1849866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts.
    Rosenfeld ME; Khoo JC; Miller E; Parthasarathy S; Palinski W; Witztum JL
    J Clin Invest; 1991 Jan; 87(1):90-9. PubMed ID: 1985115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual signaling evoked by oxidized LDLs in vascular cells.
    Nègre-Salvayre A; Augé N; Camaré C; Bacchetti T; Ferretti G; Salvayre R
    Free Radic Biol Med; 2017 May; 106():118-133. PubMed ID: 28189852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques.
    Folcik VA; Nivar-Aristy RA; Krajewski LP; Cathcart MK
    J Clin Invest; 1995 Jul; 96(1):504-10. PubMed ID: 7615823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.