BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 10583546)

  • 1. Predicting correlated responses in natural populations: changes in JHE activity in the bermuda population of the sand cricket, gryllus firmus.
    Roff DA; Fairbairn DJ
    Heredity (Edinb); 1999 Oct; 83(# (Pt 4)):440-50. PubMed ID: 10583546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EVOLUTIONARY ENDOCRINOLOGY OF JUVENILE HORMONE ESTERASE: FUNCTIONAL RELATIONSHIP WITH WING POLYMORPHISM IN THE CRICKET, GRYLLUS FIRMUS.
    Zera AJ; Huang Y
    Evolution; 1999 Jun; 53(3):837-847. PubMed ID: 28565624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. THE EVOLUTION OF THRESHOLD TRAITS: A QUANTITATIVE GENETIC ANALYSIS OF THE PHYSIOLOGICAL AND LIFE-HISTORY CORRELATES OF WING DIMORPHISM IN THE SAND CRICKET.
    Roff DA; Stirling G; Fairbairn DJ
    Evolution; 1997 Dec; 51(6):1910-1919. PubMed ID: 28565097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolution of trade-offs: geographic variation in call duration and flight ability in the sand cricket, Gryllus firmus.
    Roff DA; Crnokrak P; Fairbairn DJ
    J Evol Biol; 2003 Jul; 16(4):744-53. PubMed ID: 14632237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EVIDENCE THAT THE MAGNITUDE OF THE TRADE-OFF IN A DICHOTOMOUS TRAIT IS FREQUENCY DEPENDENT.
    Roff DA
    Evolution; 1994 Oct; 48(5):1650-1656. PubMed ID: 28568415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. THE EVOLUTION OF ALTERNATE MORPHOLOGIES: FITNESS AND WING MORPHOLOGY IN MALE SAND CRICKETS.
    Roff DA; Fairbairn DJ
    Evolution; 1993 Oct; 47(5):1572-1584. PubMed ID: 28564895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary Endocrinology of Hormonal Rhythms: Juvenile Hormone Titer Circadian Polymorphism in Gryllus firmus.
    Zera AJ
    Integr Comp Biol; 2016 Aug; 56(2):159-70. PubMed ID: 27252212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE GENETIC BASIS OF THE TRADE-OFF BETWEEN CALLING AND WING MORPH IN MALES OF THE CRICKET GRYLLUS FIRMUS.
    Crnokrak P; Roff DA
    Evolution; 1998 Aug; 52(4):1111-1118. PubMed ID: 28565217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue and stage-specific juvenile hormone esterase (JHE) and epoxide hydrolase (JHEH) enzyme activities and Jhe transcript abundance in lines of the cricket Gryllus assimilis artificially selected for plasma JHE activity: implications for JHE microevolution.
    Anand A; Crone EJ; Zera AJ
    J Insect Physiol; 2008 Sep; 54(9):1323-31. PubMed ID: 18634793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormones in the field: evolutionary endocrinology of juvenile hormone and ecdysteroids in field populations of the wing-dimorphic cricket Gryllus firmus.
    Zera AJ; Zhao Z; Kaliseck K
    Physiol Biochem Zool; 2007; 80(6):592-606. PubMed ID: 17909996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, Gryllus firmus: Implications for life-history evolution.
    Zera AJ; Vellichirammal NN; Brisson JA
    J Insect Physiol; 2018; 107():233-243. PubMed ID: 29656101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Juvenile hormone titer and morph-specific reproduction in the wing-polymorphic cricket, Gryllus firmus.
    Cisper G; Zera AJ; Borst DW
    J Insect Physiol; 2000 Apr; 46(4):585-596. PubMed ID: 12770222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic plasticity and the evolution of trade-offs: the quantitative genetics of resource allocation in the wing dimorphic cricket, Gryllus firmus.
    Roff DA; Gélinas MB
    J Evol Biol; 2003 Jan; 16(1):55-63. PubMed ID: 14635880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolic basis of life history variation: genetic and phenotypic differences in lipid reserves among life history morphs of the wing-polymorphic cricket, Gryllus firmus.
    Zera AJ; Larsen A
    J Insect Physiol; 2001 Sep; 47(10):1147-1160. PubMed ID: 12770193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of hemolymph juvenile hormone esterase from the cricket, Gryllus assimilis.
    Zera AJ; Sanger T; Hanes J; Harshman L
    Arch Insect Biochem Physiol; 2002 Jan; 49(1):41-55. PubMed ID: 11754093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary endocrinology of juvenile hormone esterase in Gryllus assimilis: direct and correlated responses to selection.
    Zera AJ; Zhang C
    Genetics; 1995 Nov; 141(3):1125-34. PubMed ID: 8582618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of temperature and wing morphology on quantitative genetic variation in the cricket Gryllus firmus, with an appendix examining the statistical properties of the Jackknife-MANOVA method of matrix comparison.
    Bégin M; Roff DA; Debat V
    J Evol Biol; 2004 Nov; 17(6):1255-67. PubMed ID: 15525410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory evolution of the migratory polymorphism in the sand cricket: combining physiology with quantitative genetics.
    Roff DA; Fairbairn DJ
    Physiol Biochem Zool; 2007; 80(4):358-69. PubMed ID: 17508332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of trade-offs: effects of inbreeding on fecundity relationships in the cricket Gryllus firmus.
    Roff DA; DeRose MA
    Evolution; 2001 Jan; 55(1):111-21. PubMed ID: 11263732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A morph-specific daily cycle in the rate of JH biosynthesis underlies a morph-specific daily cycle in the hemolymph JH titer in a wing-polymorphic cricket.
    Zhao Z; Zera AJ
    J Insect Physiol; 2004 Oct; 50(10):965-73. PubMed ID: 15518664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.