These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10584006)

  • 21. Photosynthesis in sediments determined at high spatial resolution by the use of microelectrodes.
    Nakamura Y; Satoh H; Okabe S; Watanabe Y
    Water Res; 2004 May; 38(9):2439-47. PubMed ID: 15142806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park.
    Langner HW; Jackson CR; McDermott TR; Inskeep WP
    Environ Sci Technol; 2001 Aug; 35(16):3302-9. PubMed ID: 11529568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and early preservation of lipid biomarkers in iron hot springs.
    Parenteau MN; Jahnke LL; Farmer JD; Cady SL
    Astrobiology; 2014 Jun; 14(6):502-21. PubMed ID: 24886100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geochemical and Metagenomic Characterization of Jinata Onsen, a Proterozoic-Analog Hot Spring, Reveals Novel Microbial Diversity including Iron-Tolerant Phototrophs and Thermophilic Lithotrophs.
    Ward LM; Idei A; Nakagawa M; Ueno Y; Fischer WW; McGlynn SE
    Microbes Environ; 2019 Sep; 34(3):278-292. PubMed ID: 31413226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of carbon metabolism on 13C signatures of cyanobacteria and green non-sulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA).
    van der Meer MT; Schouten S; Damsté JS; Ward DM
    Environ Microbiol; 2007 Feb; 9(2):482-91. PubMed ID: 17222146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities.
    Ward DM; Ferris MJ; Nold SC; Bateson MM
    Microbiol Mol Biol Rev; 1998 Dec; 62(4):1353-70. PubMed ID: 9841675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park.
    Boomer SM; Pierson BK; Austinhirst R; Castenholz RW
    Arch Microbiol; 2000 Sep; 174(3):152-61. PubMed ID: 11041345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Population structure and physiological changes within a hot spring microbial mat community following disturbance.
    Ferris MJ; Nold SC; Revsbech NP; Ward DM
    Appl Environ Microbiol; 1997 Apr; 63(4):1367-74. PubMed ID: 9097433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between Microorganisms Inhabiting Alkaline Siliceous Hot Spring Mat Communities and Overflowing Water.
    Becraft ED; Jackson BD; Nowack S; Klapper I; Ward DM
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does iron inhibit cryptoendolithic microbial communities?
    Johnston CG; Vestal JR
    Antarct J US; 1988; 21(5):225-6. PubMed ID: 11538332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geochemical and Stable Fe Isotopic Analysis of Dissimilatory Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park.
    Fortney NW; Beard BL; Hutchings JA; Shields MR; Bianchi TS; Boyd ES; Johnson CM; Roden EE
    Astrobiology; 2021 Jan; 21(1):83-102. PubMed ID: 32580560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan.
    Kubo K; Knittel K; Amann R; Fukui M; Matsuura K
    Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Meet Me in the Middle: Median Temperatures Impact Cyanobacteria and Photoautotrophy in Eruptive Yellowstone Hot Springs.
    Hamilton TL; Havig J
    mSystems; 2022 Feb; 7(1):e0145021. PubMed ID: 35089080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park.
    Pepe-Ranney C; Berelson WM; Corsetti FA; Treants M; Spear JR
    Environ Microbiol; 2012 May; 14(5):1182-97. PubMed ID: 22356555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat.
    Canfield DE; Des Marais DJ
    Geochim Cosmochim Acta; 1993 Aug; 57(16):3971-84. PubMed ID: 11537735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anoxygenic Phototrophs Span Geochemical Gradients and Diverse Morphologies in Terrestrial Geothermal Springs.
    Hamilton TL; Bennett AC; Murugapiran SK; Havig JR
    mSystems; 2019 Nov; 4(6):. PubMed ID: 31690593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring.
    de Beer D; Weber M; Chennu A; Hamilton T; Lott C; Macalady J; M Klatt J
    Environ Microbiol; 2017 Mar; 19(3):1251-1265. PubMed ID: 28035767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manganese oxidation in pH and O2 microenvironments produced by phytoplankton.
    Richardson LL; Aguilar C; Nealson KH
    Limnol Oceanogr; 1988; 33(3):352-63. PubMed ID: 11538363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-optical Characteristics and the Vertical Distribution of Photosynthetic Pigments and Photosynthesis in an Artificial Cyanobacterial Mat.
    Kühl M; Fenchel T
    Microb Ecol; 2000 Aug; 40(2):94-103. PubMed ID: 11029078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria.
    Maisch M; Wu W; Kappler A; Swanner ED
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.