These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10584007)

  • 1. Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions.
    Rontani JF; Bonin PC; Volkman JK
    Appl Environ Microbiol; 1999 Dec; 65(12):5484-92. PubMed ID: 10584007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments.
    Rontani JF; Gilewicz MJ; Michotey VD; Zheng TL; Bonin PC; Bertrand JC
    Appl Environ Microbiol; 1997 Feb; 63(2):636-43. PubMed ID: 9023941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic and anaerobic metabolism of squalene by a denitrifying bacterium isolated from marine sediment.
    Rontani JF; Mouzdahir A; Michotey V; Bonin P
    Arch Microbiol; 2002 Oct; 178(4):279-87. PubMed ID: 12209261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrobenzene biodegradation ability of microbial communities in water and sediments along the Songhua River after a nitrobenzene pollution event.
    Li Z; Yang M; Li D; Qi R; Liu H; Sun J; Qu J
    J Environ Sci (China); 2008; 20(7):778-86. PubMed ID: 18814571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the final step in the conversion of phytol into phytanic acid.
    van den Brink DM; van Miert JN; Dacremont G; Rontani JF; Wanders RJ
    J Biol Chem; 2005 Jul; 280(29):26838-44. PubMed ID: 15866875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytol degradation by marine bacteria.
    Gillan FT; Nichols PD; Johns RB; Bavor HJ
    Appl Environ Microbiol; 1983 May; 45(5):1423-8. PubMed ID: 16346282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds.
    Rontani JF; Bonin PC; Volkman JK
    Appl Environ Microbiol; 1999 Jan; 65(1):221-30. PubMed ID: 9872783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments.
    Davis JW; Gonsior S; Marty G; Ariano J
    Water Res; 2005 Mar; 39(6):1075-84. PubMed ID: 15766961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of fatty aldehyde dehydrogenase in the breakdown of phytol to phytanic acid.
    van den Brink DM; van Miert JN; Dacremont G; Rontani JF; Jansen GA; Wanders RJ
    Mol Genet Metab; 2004 May; 82(1):33-7. PubMed ID: 15110319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal.
    Gutbrod P; Yang W; Grujicic GV; Peisker H; Gutbrod K; Du LF; Dörmann P
    J Biol Chem; 2021; 296():100530. PubMed ID: 33713704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.
    Lomans BP; den Camp HJ; Pol A; Vogels GD
    Appl Environ Microbiol; 1999 Feb; 65(2):438-43. PubMed ID: 9925565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of long-chain isoprenoid alcohols. Incorporation of phytol and dihydrophytol into the lipids of rat brain.
    Su KL; Schmid HH
    Biochim Biophys Acta; 1975 Jan; 380(1):119-26. PubMed ID: 1122306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model of cell growth and alkane degradation in Wadden Sea sediment suspensions.
    Berthe-Corti L; Ebenhöh W
    Biosystems; 1999 Mar; 49(3):161-89. PubMed ID: 10193758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro conversion of phytol to phytanic acid in rat liver: subcellular distribution of activity and chemical characterization of intermediates using a new bromination technique.
    Muralidharan FN; Muralidharan VB
    Biochim Biophys Acta; 1985 Jun; 835(1):36-40. PubMed ID: 4005274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments.
    Dell'Anno A; Beolchini F; Rocchetti L; Luna GM; Danovaro R
    Environ Pollut; 2012 Aug; 167():85-92. PubMed ID: 22542785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA.
    Tang YJ; Carpenter SD; Deming JW; Krieger-Brockett B
    Mar Pollut Bull; 2006 Nov; 52(11):1431-40. PubMed ID: 16780896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dehalogenation in marine sediments containing natural sources of halophenols.
    King GM
    Appl Environ Microbiol; 1988 Dec; 54(12):3079-85. PubMed ID: 3223770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a consortium comprising ammonia-oxidizing bacteria and denitrifying bacteria isolated from marine sediment.
    Nakano M; Shimizu Y; Okumura H; Sugahara I; Maeda H
    Biocontrol Sci; 2008 Sep; 13(3):73-89. PubMed ID: 18839627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic and anaerobic degradation and mineralization of 14C-chitin by water column and sediment inocula of the York River estuary, Virginia.
    Boyer JN
    Appl Environ Microbiol; 1994 Jan; 60(1):174-9. PubMed ID: 8117075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of three selected benzotriazoles in aquifer materials under aerobic and anaerobic conditions.
    Liu YS; Ying GG; Shareef A; Kookana RS
    J Contam Hydrol; 2013 Aug; 151():131-9. PubMed ID: 23777830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.