These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10584062)

  • 1. Enzyme polarization of substrates of dihydrofolate reductase by different theoretical methods.
    Greatbanks SP; Gready JE; Limaye AC; Rendell AP
    Proteins; 1999 Nov; 37(2):157-65. PubMed ID: 10584062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron redistribution on binding of a substrate to an enzyme: folate and dihydrofolate reductase.
    Bajorath J; Kitson DH; Fitzgerald G; Andzelm J; Kraut J; Hagler AT
    Proteins; 1991; 9(3):217-24. PubMed ID: 2006139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    J Mol Biol; 2003 Mar; 327(2):549-60. PubMed ID: 12628257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the electron density of the cofactor NADPH on binding to E. coli dihydrofolate reductase.
    Bajorath J; Li ZQ; Fitzgerald G; Kitson DH; Farnum M; Fine RM; Kraut J; Hagler AT
    Proteins; 1991; 11(4):263-270. PubMed ID: 1758881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional role for Tyr 31 in the catalytic cycle of chicken dihydrofolate reductase.
    Shrimpton P; Mullaney A; Allemann RK
    Proteins; 2003 May; 51(2):216-23. PubMed ID: 12660990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies on the dihydrofolate reductase mechanism: electronic polarization of bound substrates.
    Bajorath J; Kraut J; Li ZQ; Kitson DH; Hagler AT
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6423-6. PubMed ID: 1862073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational methods for the study of enzymic reaction mechanisms III: a perturbation plus QM/MM approach for calculating relative free energies of protonation.
    Cummins PL; Gready JE
    J Comput Chem; 2005 Apr; 26(6):561-8. PubMed ID: 15726569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase.
    Hicks SN; Smiley RD; Hamilton JB; Howell EE
    Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach.
    He X; Wang B; Merz KM
    J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How dihydrofolate reductase facilitates protonation of dihydrofolate.
    Rod TH; Brooks CL
    J Am Chem Soc; 2003 Jul; 125(29):8718-9. PubMed ID: 12862454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase.
    Antikainen NM; Smiley RD; Benkovic SJ; Hammes GG
    Biochemistry; 2005 Dec; 44(51):16835-43. PubMed ID: 16363797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate.
    Senkovich O; Schormann N; Chattopadhyay D
    Acta Crystallogr D Biol Crystallogr; 2009 Jul; 65(Pt 7):704-16. PubMed ID: 19564691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations.
    Lin H; Truhlar DG
    J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration.
    Tosso RD; Andujar SA; Gutierrez L; Angelina E; Rodríguez R; Nogueras M; Baldoni H; Suvire FD; Cobo J; Enriz RD
    J Chem Inf Model; 2013 Aug; 53(8):2018-32. PubMed ID: 23834278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR-derived folate-bound structure of dihydrofolate reductase 1 from the halophile Haloferax volcanii.
    Boroujerdi AF; Young JK
    Biopolymers; 2009 Feb; 91(2):140-4. PubMed ID: 18825778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric studies of ligand binding in R67 dihydrofolate reductase.
    Jackson M; Chopra S; Smiley RD; Maynord PO; Rosowsky A; London RE; Levy L; Kalman TI; Howell EE
    Biochemistry; 2005 Sep; 44(37):12420-33. PubMed ID: 16156655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.