These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 10584070)

  • 1. Fluorescence quenching in the DsbA protein from Escherichia coli: complete picture of the excited-state energy pathway and evidence for the reshuffling dynamics of the microstates of tryptophan.
    Sillen A; Hennecke J; Roethlisberger D; Glockshuber R; Engelborghs Y
    Proteins; 1999 Nov; 37(2):253-63. PubMed ID: 10584070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli.
    Hennecke J; Sillen A; Huber-Wunderlich M; Engelborghs Y; Glockshuber R
    Biochemistry; 1997 May; 36(21):6391-400. PubMed ID: 9174355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Redox properties and conformational changes of DsbA protein from Escherichia coli periplasm].
    Li Q; Hu HY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Sep; 34(5):583-8. PubMed ID: 12198560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli.
    Wunderlich M; Glockshuber R
    Protein Sci; 1993 May; 2(5):717-26. PubMed ID: 8495194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase.
    Frech C; Wunderlich M; Glockshuber R; Schmid FX
    Biochemistry; 1996 Sep; 35(35):11386-95. PubMed ID: 8784194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial protein disulfide isomerase: efficient catalysis of oxidative protein folding at acidic pH.
    Wunderlich M; Otto A; Seckler R; Glockshuber R
    Biochemistry; 1993 Nov; 32(45):12251-6. PubMed ID: 8218303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo.
    Zapun A; Bardwell JC; Creighton TE
    Biochemistry; 1993 May; 32(19):5083-92. PubMed ID: 8494885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion of aromatic side chains, picosecond fluorescence, and internal energy transfer in Escherichia coli thioredoxin studied by site-directed mutagenesis, time-resolved fluorescence spectroscopy, and molecular dynamics simulations.
    Elofsson A; Rigler R; Nilsson L; Roslund J; Krause G; Holmgren A
    Biochemistry; 1991 Oct; 30(40):9648-56. PubMed ID: 1911751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability.
    Guddat LW; Bardwell JC; Glockshuber R; Huber-Wunderlich M; Zander T; Martin JL
    Protein Sci; 1997 Sep; 6(9):1893-900. PubMed ID: 9300489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of a catalytic into a structural disulfide bond by circular permutation.
    Hennecke J; Glockshuber R
    Biochemistry; 1998 Dec; 37(50):17590-7. PubMed ID: 9860875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop.
    Atkins WM; Stayton PS; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational change of the dimeric DsbC molecule induced by GdnHCl. A study by intrinsic fluorescence.
    Stepanenko OV; Kuznetsova IM; Turoverov KK; Huang C; Wang CC
    Biochemistry; 2004 May; 43(18):5296-303. PubMed ID: 15122895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Zapun A; Cooper L; Creighton TE
    Biochemistry; 1994 Feb; 33(7):1907-14. PubMed ID: 8110795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of reduced DsbA from Escherichia coli in solution.
    Schirra HJ; Renner C; Czisch M; Huber-Wunderlich M; Holak TA; Glockshuber R
    Biochemistry; 1998 May; 37(18):6263-76. PubMed ID: 9572841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system.
    Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT
    Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation.
    Inaba K; Murakami S; Suzuki M; Nakagawa A; Yamashita E; Okada K; Ito K
    Cell; 2006 Nov; 127(4):789-801. PubMed ID: 17110337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence lifetimes of the tryptophan residues in ornithine transcarbamoylase.
    Shen WH
    Biochemistry; 1993 Dec; 32(50):13925-32. PubMed ID: 8268168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments.
    Manjasetty BA; Hennecke J; Glockshuber R; Heinemann U
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):304-9. PubMed ID: 14747707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the role of the cis-proline residue in the active site of DsbA.
    Charbonnier JB; Belin P; Moutiez M; Stura EA; Quéméneur E
    Protein Sci; 1999 Jan; 8(1):96-105. PubMed ID: 10210188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA.
    Guilhot C; Jander G; Martin NL; Beckwith J
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9895-9. PubMed ID: 7568240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.