These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1058476)

  • 1. Molecular orbital studies of enzyme activity: I: Charge relay system and tetrahedral intermediate in acylation of serine proteinases.
    Scheiner S; Kleier DA; Lipscomb WN
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2606-10. PubMed ID: 1058476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular orbital studies of enzyme activity: catalytic mechanism of serine proteinases.
    Scheiner S; Lipscomb WN
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):432-6. PubMed ID: 1061145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations.
    Shi Q; Meroueh SO; Fisher JF; Mobashery S
    J Am Chem Soc; 2008 Jul; 130(29):9293-303. PubMed ID: 18576637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clarification of the mechanism of acylation reaction and origin of substrate specificity of the serine-carboxyl peptidase sedolisin through QM/MM free energy simulations.
    Xu Q; Yao J; Wlodawer A; Guo H
    J Phys Chem B; 2011 Mar; 115(10):2470-6. PubMed ID: 21332137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of catalytic residues in the formation of a tetrahedral adduct in the acylation reaction of bovine beta-trypsin. A molecular orbital study.
    Nakagawa S; Umeyama H
    J Mol Biol; 1984 Oct; 179(1):103-23. PubMed ID: 6502706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio QM/MM study of class A beta-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70.
    Meroueh SO; Fisher JF; Schlegel HB; Mobashery S
    J Am Chem Soc; 2005 Nov; 127(44):15397-407. PubMed ID: 16262403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of protein conformational fluctuation in enzyme catalysis with special attention to proton transfers in serine proteinases.
    Sumi H; Ulstrup J
    Biochim Biophys Acta; 1988 Jun; 955(1):26-42. PubMed ID: 2838088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Quantum chemistry analysis of the mechanism of action of proteolytic enzymes. III. Proton transport in serine proteases].
    Aleksandrov SL; Antonov VK
    Mol Biol (Mosk); 1987; 21(1):147-58. PubMed ID: 3033472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin.
    Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic role of proton transfers in the formation of a tetrahedral adduct in a serine carboxyl peptidase.
    Guo H; Wlodawer A; Nakayama T; Xu Q; Guo H
    Biochemistry; 2006 Aug; 45(30):9129-37. PubMed ID: 16866358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled Valence-Bond State Molecular Dynamics Description of an Enzyme-Catalyzed Reaction in a Non-Aqueous Organic Solvent.
    Duboué-Dijon E; Pluhařová E; Domin D; Sen K; Fogarty AC; Chéron N; Laage D
    J Phys Chem B; 2017 Jul; 121(29):7027-7041. PubMed ID: 28675789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do cleavages of amides by serine proteases occur through a stepwise pathway involving tetrahedral intermediates?
    Komiyama M; Bender ML
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):557-60. PubMed ID: 284381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model of serine proteases charge relay system -- PCILO study.
    Banacký P; Linder B
    Biophys Chem; 1981 Jun; 13(3):223-31. PubMed ID: 7016210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition and catalytic mechanism of HIV-1 aspartic protease.
    Silva AM; Cachau RE; Sham HL; Erickson JW
    J Mol Biol; 1996 Jan; 255(2):321-46. PubMed ID: 8551523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoelectronic control in peptide bond formation. Ab initio calculations and speculations on the mechanism of action of serine proteases.
    Gorenstein DG; Taira K
    Biophys J; 1984 Dec; 46(6):749-61. PubMed ID: 6394065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate.
    Wilmouth RC; Edman K; Neutze R; Wright PA; Clifton IJ; Schneider TR; Schofield CJ; Hajdu J
    Nat Struct Biol; 2001 Aug; 8(8):689-94. PubMed ID: 11473259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.