BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10585156)

  • 1. Ex vivo testing of the Quart arterial line filter.
    Mueller XM; Tevaearai HT; Jegger D; Augstburger M; Burki M; von Segesser LK
    Perfusion; 1999 Nov; 14(6):481-7. PubMed ID: 10585156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air filtering capacity of an integrated cardiopulmonary bypass unit.
    Mueller XM; Tevaearai HT; Jegger D; von Segesser LK
    ASAIO J; 2003; 49(4):365-9. PubMed ID: 12918575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter.
    Salavitabar A; Qiu F; Kunselman A; Ündar A
    Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Purge-Flow Rate on Microbubble Capture in Radial Arterial-Line Filters.
    Herbst DP
    J Extra Corpor Technol; 2016 Sep; 48(3):105-112. PubMed ID: 27729703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Micropore Filter Technology: Exploring the Blood Flow Path in Arterial-Line Filters and Its Effect on Bubble Trapping Functions.
    Herbst DP
    J Extra Corpor Technol; 2017 Mar; 49(1):44-48. PubMed ID: 28298665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed circuit cardiopulmonary bypass with centrifugal pump for open-heart surgery: new trial for air removal.
    Morita M; Yozu R; Matayoshi T; Mitsumaru A; Shin H; Kawada S
    Artif Organs; 2000 Jun; 24(6):442-5. PubMed ID: 10886062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.
    Qiu F; Peng S; Kunselman A; Ündar A
    Artif Organs; 2010 Nov; 34(11):1053-7. PubMed ID: 21137158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can the oxygenator screen filter reduce gaseous microemboli?
    Johagen D; Appelblad M; Svenmarker S
    J Extra Corpor Technol; 2014 Mar; 46(1):60-6. PubMed ID: 24779120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new minimized perfusion circuit provides highly effective ultrasound controlled deairing.
    Kutschka I; Schönrock U; El Essawi A; Pahari D; Anssar M; Harringer W
    Artif Organs; 2007 Mar; 31(3):215-20. PubMed ID: 17343697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air Transmission Comparison of the Affinity Fusion Oxygenator with an Integrated Arterial Filter to the Affinity NT Oxygenator with a Separate Arterial Filter.
    Potger KC; McMillan D; Ambrose M
    J Extra Corpor Technol; 2014 Sep; 46(3):229-38. PubMed ID: 26357789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assisted venous drainage, venous air, and gaseous microemboli transmission into the arterial line: an in-vitro study.
    Rider SP; Simon LV; Rice BJ; Poulton CC
    J Extra Corpor Technol; 1998 Dec; 30(4):160-5. PubMed ID: 10537575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deairing of the venous drainage in standard extracorporeal circulation results in a profound reduction of arterial micro bubbles.
    Stock UA; Müller T; Bienek R; Krause H; Hartrumpf M; Albes J
    Thorac Cardiovasc Surg; 2006 Feb; 54(1):39-41. PubMed ID: 16485187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of HL-20 roller pump and Rotaflow centrifugal pump on perfusion quality and gaseous microemboli delivery.
    Yee S; Qiu F; Su X; Rider A; Kunselman AR; Guan Y; Undar A
    Artif Organs; 2010 Nov; 34(11):937-43. PubMed ID: 20946282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evaluation of the Dideco D903 Avant 1.7 hollow-fibre membrane oxygenator.
    Mueller XM; Tevaearai HT; Augstburger M; Horisberger J; von Segesser LK
    Perfusion; 1998 Sep; 13(5):353-9. PubMed ID: 9778721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of an air filter at the drainage site in a closed circuit with a centrifugal blood pump: an in vitro study.
    Mitsumaru A; Yozu R; Matayoshi T; Morita M; Shin H; Tsutsumi K; Iino Y; Kawada S
    ASAIO J; 2001; 47(6):692-5. PubMed ID: 11730213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodialysis dialyzers contribute to contamination of air microemboli that bypass the alarm system in the air trap.
    Stegmayr C; Jonsson P; Forsberg U; Stegmayr B
    Int J Artif Organs; 2008 Apr; 31(4):317-22. PubMed ID: 18432587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype.
    Herbst DP
    J Extra Corpor Technol; 2014 Sep; 46(3):239-50. PubMed ID: 26357790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model.
    Wang S; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubble generation and venous air filtration by hard-shell venous reservoirs: a comparative study.
    Mitchell SJ; Willcox T; Gorman DF
    Perfusion; 1997 Sep; 12(5):325-33. PubMed ID: 9300478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.