These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10585204)

  • 1. Designing libraries with CNS activity.
    Ajay ; Bemis GW; Murcko MA
    J Med Chem; 1999 Dec; 42(24):4942-51. PubMed ID: 10585204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural network based virtual high throughput screening test for the prediction of CNS activity.
    Keserû GM; Molnár L; Greiner I
    Comb Chem High Throughput Screen; 2000 Dec; 3(6):535-40. PubMed ID: 11121522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Database mining applied to central nervous system (CNS) activity.
    Pintore M; Taboureau O; Ros F; Chrétien JR
    Eur J Med Chem; 2001 Apr; 36(4):349-59. PubMed ID: 11461760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors.
    Matter H
    J Med Chem; 1997 Apr; 40(8):1219-29. PubMed ID: 9111296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of CNS activity of compound libraries using substructure analysis.
    Engkvist O; Wrede P; Rester U
    J Chem Inf Comput Sci; 2003; 43(1):155-60. PubMed ID: 12546548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification scheme for the design of serine protease targeted compound libraries.
    Lang SA; Kozyukov AV; Balakin KV; Skorenko AV; Ivashchenko AA; Savchuk NP
    J Comput Aided Mol Des; 2002 Nov; 16(11):803-7. PubMed ID: 12825792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of central nervous system activity of compounds. Identification of potential pharmacophores by the TOPS-MODE approach.
    Cabrera Pérez MA; Sanz MB
    Bioorg Med Chem; 2004 Nov; 12(22):5833-43. PubMed ID: 15498659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a pharmacophore-based QSAR model for the prediction of CNS activity.
    Gozalbes R; Barbosa F; Nicolaï E; Horvath D; Froloff N
    ChemMedChem; 2009 Feb; 4(2):204-9. PubMed ID: 19097128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical approaches to evaluating and optimizing brain exposure in early drug discovery.
    Freeman BB; Yang L; Rankovic Z
    Eur J Med Chem; 2019 Nov; 182():111643. PubMed ID: 31514017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNS Multiparameter Optimization Approach: Is it in Accordance with Occam's Razor Principle?
    Raevsky OA
    Mol Inform; 2016 Apr; 35(3-4):94-8. PubMed ID: 27491918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technically Extended MultiParameter Optimization (TEMPO): An Advanced Robust Scoring Scheme To Calculate Central Nervous System Druggability and Monitor Lead Optimization.
    Ghose AK; Ott GR; Hudkins RL
    ACS Chem Neurosci; 2017 Jan; 8(1):147-154. PubMed ID: 27741392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating in Silico and in Vitro Approaches To Predict Drug Accessibility to the Central Nervous System.
    Zhang YY; Liu H; Summerfield SG; Luscombe CN; Sahi J
    Mol Pharm; 2016 May; 13(5):1540-50. PubMed ID: 27015243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties.
    Wager TT; Hou X; Verhoest PR; Villalobos A
    ACS Chem Neurosci; 2010 Jun; 1(6):435-49. PubMed ID: 22778837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A similarity-based data-fusion approach to the visual characterization and comparison of compound databases.
    Medina-Franco JL; Maggiora GM; Giulianotti MA; Pinilla C; Houghten RA
    Chem Biol Drug Des; 2007 Nov; 70(5):393-412. PubMed ID: 17927720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can we learn to distinguish between "drug-like" and "nondrug-like" molecules?
    Ajay A; Walters WP; Murcko MA
    J Med Chem; 1998 Aug; 41(18):3314-24. PubMed ID: 9719583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid estimation of hydrophobicity for virtual combinatorial library analysis.
    Oprea TI
    SAR QSAR Environ Res; 2001; 12(1-2):129-41. PubMed ID: 11697052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.
    Ghose AK; Viswanadhan VN; Wendoloski JJ
    J Comb Chem; 1999 Jan; 1(1):55-68. PubMed ID: 10746014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates.
    Adenot M; Lahana R
    J Chem Inf Comput Sci; 2004; 44(1):239-48. PubMed ID: 14741033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNS Physicochemical Property Space Shaped by a Diverse Set of Molecules with Experimentally Determined Exposure in the Mouse Brain.
    Rankovic Z
    J Med Chem; 2017 Jul; 60(14):5943-5954. PubMed ID: 28388050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantized surface complementarity diversity (QSCD): a model based on small molecule-target complementarity.
    Wintner EA; Moallemi CC
    J Med Chem; 2000 May; 43(10):1993-2006. PubMed ID: 10821712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.