These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10585500)

  • 41. Statistical analysis of predicted transmembrane alpha-helices.
    Arkin IT; Brunger AT
    Biochim Biophys Acta; 1998 Dec; 1429(1):113-28. PubMed ID: 9920390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A knowledge-based scale for amino acid membrane propensity.
    Punta M; Maritan A
    Proteins; 2003 Jan; 50(1):114-21. PubMed ID: 12471604
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Helix perturbations in membrane proteins assist in inter-helical interactions and optimal helix positioning in the bilayer.
    Shelar A; Bansal M
    Biochim Biophys Acta; 2016 Nov; 1858(11):2804-2817. PubMed ID: 27521749
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of alpha-helices in proteins with the hydrophobic strip-of-helix template and distributions of other amino acids around the hydrophobic strip.
    Vazquez SR; Kuo DZ; Salomon M; Hardy L; Lew RA; Humphreys RE
    Arch Biochem Biophys; 1993 Sep; 305(2):448-53. PubMed ID: 8373182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments.
    Fariselli P; Finelli M; Marchignoli D; Martelli PL; Rossi I; Casadio R
    Bioinformatics; 2003 Mar; 19(4):500-5. PubMed ID: 12611805
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrophobic clusters in protein structures.
    Arunachalam J; Gautham N
    Proteins; 2008 Jun; 71(4):2012-25. PubMed ID: 18186486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning.
    Caputo GA; London E
    Biochemistry; 2004 Jul; 43(27):8794-806. PubMed ID: 15236588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Higher-order interhelical spatial interactions in membrane proteins.
    Adamian L; Jackups R; Binkowski TA; Liang J
    J Mol Biol; 2003 Mar; 327(1):251-72. PubMed ID: 12614623
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG; Chaiken IM
    Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accessibility of introduced cysteines in chemoreceptor transmembrane helices reveals boundaries interior to bracketing charged residues.
    Boldog T; Hazelbauer GL
    Protein Sci; 2004 Jun; 13(6):1466-75. PubMed ID: 15133159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energetics, stability, and prediction of transmembrane helices.
    Jayasinghe S; Hristova K; White SH
    J Mol Biol; 2001 Oct; 312(5):927-34. PubMed ID: 11580239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes.
    Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN
    Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrophobicity and helicity of membrane-interactive peptides containing peptoid residues.
    Tang YC; Deber CM
    Biopolymers; 2002 Nov; 65(4):254-62. PubMed ID: 12382286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The hydrophobic moment and its use in the classification of amphiphilic structures (review).
    Phoenix DA; Harris F
    Mol Membr Biol; 2002; 19(1):1-10. PubMed ID: 11989818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of transmembrane beta-strands from hydrophobic characteristics of proteins.
    Gromiha MM; Ponnuswamy PK
    Int J Pept Protein Res; 1993 Nov; 42(5):420-31. PubMed ID: 8106193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The helical hydrophobic moment: a measure of the amphiphilicity of a helix.
    Eisenberg D; Weiss RM; Terwilliger TC
    Nature; 1982 Sep; 299(5881):371-4. PubMed ID: 7110359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The membrane- and soluble-protein helix-helix interactome: similar geometry via different interactions.
    Zhang SQ; Kulp DW; Schramm CA; Mravic M; Samish I; DeGrado WF
    Structure; 2015 Mar; 23(3):527-541. PubMed ID: 25703378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A structural dissection of amino acid substitutions in helical transmembrane proteins.
    Mokrab Y; Stevens TJ; Mizuguchi K
    Proteins; 2010 Nov; 78(14):2895-907. PubMed ID: 20715054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of hydrophobic moment and hydrophobicity properties for transmembrane alpha-helices.
    Wallace J; Daman OA; Harris F; Phoenix DA
    Theor Biol Med Model; 2004 Aug; 1():5. PubMed ID: 15312230
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A turn propensity scale for transmembrane helices.
    Monné M; Hermansson M; von Heijne G
    J Mol Biol; 1999 Apr; 288(1):141-5. PubMed ID: 10329132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.