These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10585550)

  • 21. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.
    Atteia A; van Lis R; Mendoza-Hernández G; Henze K; Martin W; Riveros-Rosas H; González-Halphen D
    Plant Mol Biol; 2003 Sep; 53(1-2):175-88. PubMed ID: 14756315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Zheng T; Olson DG; Tian L; Bomble YJ; Himmel ME; Lo J; Hon S; Shaw AJ; van Dijken JP; Lynd LR
    J Bacteriol; 2015 Aug; 197(15):2610-9. PubMed ID: 26013492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae.
    Kong QX; Cao LM; Zhang AL; Chen X
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1382-6. PubMed ID: 17021874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of the metal ion in the mechanism of the K+-activated aldehyde dehydrogenase of Saccharomyces cerevisiae.
    Dickinson FM; Haywood GW
    Biochem J; 1987 Oct; 247(2):377-84. PubMed ID: 3322263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The respirative breakdown of glucose by Saccharomyces cerevisiae: an assessment of a physiological state.
    Käppeli O; Arreguin M; Rieger M
    J Gen Microbiol; 1985 Jun; 131(6):1411-6. PubMed ID: 2995544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of fermentation conditions on specific activity of the enzymes alcohol and aldehyde dehydrogenase from yeasts.
    Mauricio JC; Ortega JM
    Microbios; 1993; 75(303):95-106. PubMed ID: 8412848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of mitochondrial cytochromes and haem content on cytochrome P450 in Saccharomyces cerevisiae.
    Meussdoerffer F; Fiechter A
    J Gen Microbiol; 1986 Aug; 132(8):2187-93. PubMed ID: 3025336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Ald6p as the target of a class of small-molecule suppressors of FK506 and their use in network dissection.
    Butcher RA; Schreiber SL
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7868-73. PubMed ID: 15146068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rsf1p, a protein required for respiratory growth of Saccharomyces cerevisiae.
    Lu L; Roberts G; Simon K; Yu J; Hudson AP
    Curr Genet; 2003 Jul; 43(4):263-72. PubMed ID: 12734673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. 3. A nuclear mutant lacking mitochondrial adenosine triphosphatase.
    Ebner E; Schatz G
    J Biol Chem; 1973 Aug; 248(15):5379-84. PubMed ID: 4358614
    [No Abstract]   [Full Text] [Related]  

  • 33. Overexpression of the truncated version of ILV2 enhances glycerol production in Saccharomyces cerevisiae.
    Murashchenko L; Abbas C; Dmytruk K; Sibirny A
    Yeast; 2016 Aug; 33(8):463-9. PubMed ID: 26990811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.
    Roberts GG; Hudson AP
    Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Cu,Zn superoxide dismutase disruption mutation on replicative senescence in Saccharomyces cerevisiae.
    Barker MG; Brimage LJ; Smart KA
    FEMS Microbiol Lett; 1999 Aug; 177(2):199-204. PubMed ID: 10474184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The role of catalases in protection of proteins against oxidation in Saccharomyces cerevisiae utilizing ethanol as a carbon source].
    Hospodar'ov DV; Mandryk SIa; Lushchak VI
    Ukr Biokhim Zh (1999); 2005; 77(2):162-5. PubMed ID: 16335251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monoamine metabolism and behavioral responses to ethanol in mitochondrial aldehyde dehydrogenase knockout mice.
    Fernandez E; Koek W; Ran Q; Gerhardt GA; France CP; Strong R
    Alcohol Clin Exp Res; 2006 Oct; 30(10):1650-8. PubMed ID: 17010132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disruption of genes encoding pyruvate dehydrogenase kinases leads to retarded growth on acetate and ethanol in Saccharomyces cerevisiae.
    Steensma HY; Tomaska L; Reuven P; Nosek J; Brandt R
    Yeast; 2008 Jan; 25(1):9-19. PubMed ID: 17918780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo.
    Chen CH; Cruz LA; Mochly-Rosen D
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3074-9. PubMed ID: 25713355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.