These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 10585947)

  • 1. Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects.
    Rouzina I; Bloomfield VA
    Biophys J; 1999 Dec; 77(6):3252-5. PubMed ID: 10585947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat capacity effects on the melting of DNA. 1. General aspects.
    Rouzina I; Bloomfield VA
    Biophys J; 1999 Dec; 77(6):3242-51. PubMed ID: 10585946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting studies of short DNA hairpins: influence of loop sequence and adjoining base pair identity on hairpin thermodynamic stability.
    Vallone PM; Paner TM; Hilario J; Lane MJ; Faldasz BD; Benight AS
    Biopolymers; 1999 Oct; 50(4):425-42. PubMed ID: 10423551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule derivation of salt dependent base-pair free energies in DNA.
    Huguet JM; Bizarro CV; Forns N; Smith SB; Bustamante C; Ritort F
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15431-6. PubMed ID: 20716688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the number of nucleic acid oligomer charges on the salt dependence of stability (DeltaG 37degrees) and melting temperature (Tm): NLPB analysis of experimental data.
    Shkel IA; Record MT
    Biochemistry; 2004 Jun; 43(22):7090-101. PubMed ID: 15170346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization method for obtaining nearest-neighbour DNA entropies and enthalpies directly from melting temperatures.
    Weber G
    Bioinformatics; 2015 Mar; 31(6):871-7. PubMed ID: 25391397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of the melting of PNA(2)/DNA triple helices.
    Krupnik OV; Guscho Y; Sluchanko K; Nielsen P; Lazurkin Y
    J Biomol Struct Dyn; 2001 Dec; 19(3):535-42. PubMed ID: 11790151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA melting and energetics of the double helix.
    Vologodskii A; Frank-Kamenetskii MD
    Phys Life Rev; 2018 Aug; 25():1-21. PubMed ID: 29170011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of DNA duplexes containing GG, CC, AA, and TT mismatches.
    Tikhomirova A; Beletskaya IV; Chalikian TV
    Biochemistry; 2006 Sep; 45(35):10563-71. PubMed ID: 16939208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-induced melting of the DNA double helix 1. Thermodynamic analysis.
    Rouzina I; Bloomfield VA
    Biophys J; 2001 Feb; 80(2):882-93. PubMed ID: 11159455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correcting for heat capacity and 5'-TA type terminal nearest neighbors improves prediction of DNA melting temperatures using nearest-neighbor thermodynamic models.
    Hughesman CB; Turner RF; Haynes C
    Biochemistry; 2011 Apr; 50(13):2642-9. PubMed ID: 21323352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helix-coil transition of a four-way DNA junction observed by multiple fluorescence parameters.
    Vámosi G; Clegg RM
    J Phys Chem B; 2008 Oct; 112(41):13136-48. PubMed ID: 18811195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivation of nearest-neighbor DNA parameters in magnesium from single molecule experiments.
    Huguet JM; Ribezzi-Crivellari M; Bizarro CV; Ritort F
    Nucleic Acids Res; 2017 Dec; 45(22):12921-12931. PubMed ID: 29177444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-induced melting of the DNA double helix. 2. Effect of solution conditions.
    Rouzina I; Bloomfield VA
    Biophys J; 2001 Feb; 80(2):894-900. PubMed ID: 11159456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the heat capacity change in understanding and modeling melting thermodynamics of complementary duplexes containing standard and nucleobase-modified LNA.
    Hughesman CB; Turner RF; Haynes CA
    Biochemistry; 2011 Jun; 50(23):5354-68. PubMed ID: 21548576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation.
    Wu P; Nakano S; Sugimoto N
    Eur J Biochem; 2002 Jun; 269(12):2821-30. PubMed ID: 12071944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence effects on the relative thermodynamic stabilities of B-Z junction-forming DNA oligomeric duplexes.
    Otokiti EO; Sheardy RD
    Biophys J; 1997 Dec; 73(6):3135-41. PubMed ID: 9414225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation.
    Lu ZJ; Turner DH; Mathews DH
    Nucleic Acids Res; 2006; 34(17):4912-24. PubMed ID: 16982646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of polyelectrolyte theories for analysis of DNA melting in the presence of Na+ and Mg2+ ions.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    Biophys J; 1998 Dec; 75(6):3041-56. PubMed ID: 9826624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of DNA dumbbells. III. Theoretical analysis of optical melting curves of dumbbells with a 16 base-pair duplex stem and Tn end loops (n = 2, 3, 4, 6, 8, 10, 14).
    Paner TM; Amaratunga M; Benight AS
    Biopolymers; 1992 Jul; 32(7):881-92. PubMed ID: 1391636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.