BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10585951)

  • 1. Sampling field heterogeneity at the heme of c-type cytochromes by spectral hole burning spectroscopy and electrostatic calculations.
    Laberge M; Köhler M; Vanderkooi JM; Friedrich J
    Biophys J; 1999 Dec; 77(6):3293-304. PubMed ID: 10585951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stark effect experiments in cytochrome c-type proteins: structural hierarchies.
    Köhler M; Gafert J; Friedrich J; Vanderkooi JM; Laberge M
    Biophys J; 1996 Jul; 71(1):77-85. PubMed ID: 8804590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: surface-enhanced resonance Raman spectroscopy and simulation studies.
    Rivas L; Soares CM; Baptista AM; Simaan J; Di Paolo RE; Murgida DH; Hildebrandt P
    Biophys J; 2005 Jun; 88(6):4188-99. PubMed ID: 15764652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations.
    Soares CM; Martel PJ; Mendes J; Carrondo MA
    Biophys J; 1998 Apr; 74(4):1708-21. PubMed ID: 9545034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the redox potential in c-type cytochromes: importance of the entropic contribution.
    Bertrand P; Mbarki O; Asso M; Blanchard L; Guerlesquin F; Tegoni M
    Biochemistry; 1995 Sep; 34(35):11071-9. PubMed ID: 7669764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c.
    Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M
    Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of charge interactions on the carboxylate vibrational stretching frequency in c-type cytochromes investigated by continuum electrostatic calculations and FTIR spectroscopy.
    Laberge M; Sharp KA; Vanderkooi JM
    Biophys Chem; 1998 Mar; 71(1):9-20. PubMed ID: 9591357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling electron transfer thermodynamics in protein complexes: interaction between two cytochromes c(3).
    Teixeira VH; Baptista AM; Soares CM
    Biophys J; 2004 May; 86(5):2773-85. PubMed ID: 15111396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic strength-dependent physicochemical factors in cytochrome c3 regulating the electron transfer rate.
    Ohmura T; Nakamura H; Niki K; Cusanovich MA; Akutsu H
    Biophys J; 1998 Sep; 75(3):1483-90. PubMed ID: 9726950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function relationship in type II cytochrome c(3) from Desulfovibrio africanus: a novel function in a familiar heme core.
    Pereira PM; Pacheco I; Turner DL; Louro RO
    J Biol Inorg Chem; 2002 Sep; 7(7-8):815-22. PubMed ID: 12203018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating energy flow in biomolecules: application to tuna cytochrome c.
    Wang Q; Wong CF; Rabitz H
    Biophys J; 1998 Jul; 75(1):60-9. PubMed ID: 9649368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome c peroxidase complexed with cytochrome c has an unperturbed heme moiety.
    Wang J; Larsen RW; Moench SJ; Satterlee JD; Rousseau DL; Ondrias MR
    Biochemistry; 1996 Jan; 35(2):453-63. PubMed ID: 8555215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus.
    Nørager S; Legrand P; Pieulle L; Hatchikian C; Roth M
    J Mol Biol; 1999 Jul; 290(4):881-902. PubMed ID: 10398589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3.
    Ma JG; Zhang J; Franco R; Jia SL; Moura I; Moura JJ; Kroneck PM; Shelnutt JA
    Biochemistry; 1998 Sep; 37(36):12431-42. PubMed ID: 9730815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy.
    Schweitzer-Stenner R
    J Phys Chem B; 2008 Aug; 112(33):10358-66. PubMed ID: 18665633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polarity of tyrosine 67 in yeast iso-1-cytochrome c monitored by second derivative spectroscopy.
    Schroeder HR; McOdimba FA; Guillemette JG; Kornblatt JA
    Biochem Cell Biol; 1997; 75(3):191-7. PubMed ID: 9404638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution three-dimensional structure of horse heart cytochrome c.
    Bushnell GW; Louie GV; Brayer GD
    J Mol Biol; 1990 Jul; 214(2):585-95. PubMed ID: 2166170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic hole burning, hole filling, and conformational relaxation in heme proteins: direct evidence for the functional significance of a hierarchy of dynamical processes.
    Huang J; Ridsdale A; Wang J; Friedman JM
    Biochemistry; 1997 Nov; 36(47):14353-65. PubMed ID: 9398153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical band splitting and electronic perturbations of the heme chromophore in cytochrome C at room temperature probed by visible electronic circular dichroism spectroscopy.
    Dragomir I; Hagarman A; Wallace C; Schweitzer-Stenner R
    Biophys J; 2007 Feb; 92(3):989-98. PubMed ID: 17098790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.