BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 10586691)

  • 1. [Biological response to oxidative stress and the signal transduction pathway of NF-kappa B].
    Okamoto T
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2405-13. PubMed ID: 10586691
    [No Abstract]   [Full Text] [Related]  

  • 2. [Oxy-stress response and its control mechanism: overview].
    Okamoto T
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2403-4. PubMed ID: 10586690
    [No Abstract]   [Full Text] [Related]  

  • 3. Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells.
    Hirota K; Matsui M; Murata M; Takashima Y; Cheng FS; Itoh T; Fukuda K; Yodoi J
    Biochem Biophys Res Commun; 2000 Jul; 274(1):177-82. PubMed ID: 10903915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible glutathiolation of caspase-3 by glutaredoxin as a novel redox signaling mechanism in tumor necrosis factor-alpha-induced cell death.
    Sykes MC; Mowbray AL; Jo H
    Circ Res; 2007 Feb; 100(2):152-4. PubMed ID: 17272816
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxidative stress and signal transduction.
    Schulze-Osthoff K; Bauer MK; Vogt M; Wesselborg S
    Int J Vitam Nutr Res; 1997; 67(5):336-42. PubMed ID: 9350475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of human thioltransferase (hTTase) gene by AP-1 transcription factor under oxidative stress.
    Krysan K; Lou MF
    Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):1876-83. PubMed ID: 12036993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of reactive oxygen species, glutathione and NF-kappaB in apoptosis induced by 3,4-methylenedioxymethamphetamine ("Ecstasy") on hepatic stellate cells.
    Montiel-Duarte C; Ansorena E; López-Zabalza MJ; Cenarruzabeitia E; Iraburu MJ
    Biochem Pharmacol; 2004 Mar; 67(6):1025-33. PubMed ID: 15006539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin: a key regulator of cardiovascular homeostasis.
    Yamawaki H; Haendeler J; Berk BC
    Circ Res; 2003 Nov; 93(11):1029-33. PubMed ID: 14645133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evolutionarily conserved 16-kDa thioredoxin-related protein is an antioxidant which regulates the NF-kappaB signaling pathway.
    Wang XW; Liou YC; Ho B; Ding JL
    Free Radic Biol Med; 2007 Jan; 42(2):247-59. PubMed ID: 17189830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of redox-sensitive transcription factors NF-kappaB and AP-1 in the modulation of the Cyp1a1 gene by mercury, lead, and copper.
    Korashy HM; El-Kadi AO
    Free Radic Biol Med; 2008 Mar; 44(5):795-806. PubMed ID: 18078826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2).
    Koong AC; Chen EY; Mivechi NF; Denko NC; Stambrook P; Giaccia AJ
    Cancer Res; 1994 Oct; 54(20):5273-9. PubMed ID: 7923153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct association of hepatopoietin with thioredoxin constitutes a redox signal transduction in activation of AP-1/NF-kappaB.
    Li Y; Liu W; Xing G; Tian C; Zhu Y; He F
    Cell Signal; 2005 Aug; 17(8):985-96. PubMed ID: 15894171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species and the modulation of stroke.
    Crack PJ; Taylor JM
    Free Radic Biol Med; 2005 Jun; 38(11):1433-44. PubMed ID: 15890617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular activation of NF-kappaB, pro-inflammatory mediators, and signal pathways in gamma-irradiated mice.
    Ha YM; Chung SW; Kim JM; Kim DH; Kim JY; Lee EK; Lee J; Kim YJ; Yoo MA; Jeong KS; Chung HY
    Biotechnol Lett; 2010 Mar; 32(3):373-8. PubMed ID: 19915799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The role of redox-dependent signal systems in the regulation of apoptosis under oxidative stress condition].
    Riazantseva NV; Novitskiĭ VV; Chasovskikh NIu; Kaĭgorodova EV; Starikova EG; Starikov IuV; Radzivil TT; Krat NV
    Tsitologiia; 2009; 51(4):329-34. PubMed ID: 19505051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of H(2)O(2)on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase.
    Xing KY; Lou MF
    Exp Eye Res; 2002 Jan; 74(1):113-22. PubMed ID: 11878824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular response to oxidative stress: signaling for suicide and survival.
    Martindale JL; Holbrook NJ
    J Cell Physiol; 2002 Jul; 192(1):1-15. PubMed ID: 12115731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and thioredoxin system.
    Koháryová M; Kolárová M
    Gen Physiol Biophys; 2008 Jun; 27(2):71-84. PubMed ID: 18645221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression.
    Rahman I; Marwick J; Kirkham P
    Biochem Pharmacol; 2004 Sep; 68(6):1255-67. PubMed ID: 15313424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change of redox status and modulation by thiol replenishment in retinal photooxidative damage.
    Tanito M; Nishiyama A; Tanaka T; Masutani H; Nakamura H; Yodoi J; Ohira A
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2392-400. PubMed ID: 12091442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.