These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 10587450)
1. The C-terminal region of human glutathione transferase A1-1 affects the rate of glutathione binding and the ionization of the active-site Tyr9. Gustafsson A; Etahadieh M; Jemth P; Mannervik B Biochemistry; 1999 Dec; 38(49):16268-75. PubMed ID: 10587450 [TBL] [Abstract][Full Text] [Related]
2. Residue 219 impacts on the dynamics of the C-terminal region in glutathione transferase A1-1: implications for stability and catalytic and ligandin functions. Mosebi S; Sayed Y; Burke J; Dirr HW Biochemistry; 2003 Dec; 42(51):15326-32. PubMed ID: 14690442 [TBL] [Abstract][Full Text] [Related]
3. Role of the glutamyl alpha-carboxylate of the substrate glutathione in the catalytic mechanism of human glutathione transferase A1-1. Gustafsson A; Pettersson PL; Grehn L; Jemth P; Mannervik B Biochemistry; 2001 Dec; 40(51):15835-45. PubMed ID: 11747461 [TBL] [Abstract][Full Text] [Related]
4. Role of the C-terminal helix 9 in the stability and ligandin function of class alpha glutathione transferase A1-1. Dirr HW; Wallace LA Biochemistry; 1999 Nov; 38(47):15631-40. PubMed ID: 10569948 [TBL] [Abstract][Full Text] [Related]
5. A conserved N-capping motif contributes significantly to the stabilization and dynamics of the C-terminal region of class Alpha glutathione S-transferases. Dirr HW; Little T; Kuhnert DC; Sayed Y J Biol Chem; 2005 May; 280(20):19480-7. PubMed ID: 15757902 [TBL] [Abstract][Full Text] [Related]
6. Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products. Bruns CM; Hubatsch I; Ridderström M; Mannervik B; Tainer JA J Mol Biol; 1999 May; 288(3):427-39. PubMed ID: 10329152 [TBL] [Abstract][Full Text] [Related]
7. Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1. Widersten M; Björnestedt R; Mannervik B Biochemistry; 1996 Jun; 35(24):7731-42. PubMed ID: 8672473 [TBL] [Abstract][Full Text] [Related]
8. Stopped-flow kinetic analysis of the ligand-induced coil-helix transition in glutathione S-transferase A1-1: evidence for a persistent denatured state. Nieslanik BS; Dabrowski MJ; Lyon RP; Atkins WM Biochemistry; 1999 May; 38(21):6971-80. PubMed ID: 10346919 [TBL] [Abstract][Full Text] [Related]
9. Engineering a new C-terminal tail in the H-site of human glutathione transferase P1-1: structural and functional consequences. Micaloni C; Kong GK; Mazzetti AP; Nuccetelli M; Antonini G; Stella L; McKinstry WJ; Polekhina G; Rossjohn J; Federici G; Ricci G; Parker MW; Lo Bello M J Mol Biol; 2003 Jan; 325(1):111-22. PubMed ID: 12473455 [TBL] [Abstract][Full Text] [Related]
10. Pressure-dependent ionization of Tyr 9 in glutathione S-transferase A1-1: contribution of the C-terminal helix to a "soft" active site. Atkins WM; Dietze EC; Ibarra C Protein Sci; 1997 Apr; 6(4):873-81. PubMed ID: 9098897 [TBL] [Abstract][Full Text] [Related]
11. Aromatic residues in the C-terminal region of glutathione transferase A1-1 influence rate-determining steps in the catalytic mechanism. Nilsson LO; Edalat M; Pettersson PL; Mannervik B Biochim Biophys Acta; 2002 May; 1597(1):157-63. PubMed ID: 12009415 [TBL] [Abstract][Full Text] [Related]
12. Arginine 15 stabilizes an S(N)Ar reaction transition state and the binding of anionic ligands at the active site of human glutathione transferase A1-1. Gildenhuys S; Dobreva M; Kinsley N; Sayed Y; Burke J; Pelly S; Gordon GP; Sayed M; Sewell T; Dirr HW Biophys Chem; 2010 Feb; 146(2-3):118-25. PubMed ID: 19959275 [TBL] [Abstract][Full Text] [Related]
13. Tertiary interactions stabilise the C-terminal region of human glutathione transferase A1-1: a crystallographic and calorimetric study. Kuhnert DC; Sayed Y; Mosebi S; Sayed M; Sewell T; Dirr HW J Mol Biol; 2005 Jun; 349(4):825-38. PubMed ID: 15893769 [TBL] [Abstract][Full Text] [Related]
14. Mechanism-based phage display selection of active-site mutants of human glutathione transferase A1-1 catalyzing SNAr reactions. Hansson LO; Widersten M; Mannervik B Biochemistry; 1997 Sep; 36(37):11252-60. PubMed ID: 9287168 [TBL] [Abstract][Full Text] [Related]
15. Aromatic residues in the C-terminal region of glutathione transferase A1-1 influence rate-determining steps in the catalytic mechanism. Nilsson LO; Edalat M; Pettersson PL; Mannervik B Biochim Biophys Acta; 2002 Jul; 1598(1-2):199-205. PubMed ID: 12147362 [TBL] [Abstract][Full Text] [Related]
16. Energetics of ligand binding to human glutathione transferase A1-1: Tyr-9 associated localisation of the C-terminal helix is ligand-dependent. Balchin D; Dirr HW; Sayed Y Biophys Chem; 2011 Jul; 156(2-3):153-8. PubMed ID: 21530062 [TBL] [Abstract][Full Text] [Related]
17. Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1-1. Björnestedt R; Stenberg G; Widersten M; Board PG; Sinning I; Jones TA; Mannervik B J Mol Biol; 1995 Apr; 247(4):765-73. PubMed ID: 7723030 [TBL] [Abstract][Full Text] [Related]
18. Contribution of aromatic-aromatic interactions to the anomalous pK(a) of tyrosine-9 and the C-terminal dynamics of glutathione S-transferase A1-1. Ibarra C; Nieslanik BS; Atkins WM Biochemistry; 2001 Sep; 40(35):10614-24. PubMed ID: 11524005 [TBL] [Abstract][Full Text] [Related]
19. Communication between the two active sites of glutathione S-transferase A1-1, probed using wild-type-mutant heterodimers. Misquitta SA; Colman RF Biochemistry; 2005 Jun; 44(24):8608-19. PubMed ID: 15952767 [TBL] [Abstract][Full Text] [Related]