BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 10588049)

  • 21. Phosphorylation of the proteins of the extracellular matrix of mineralized tissues by casein kinase-like activity.
    Veis A; Sfeir C; Wu CB
    Crit Rev Oral Biol Med; 1997; 8(4):360-79. PubMed ID: 9391750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the role of cyclic AMP-independent protein kinases in the modification of yeast ribosomal proteins in vivo.
    Kudlicki W; Szyszka R; Grankowski N; Gasior E
    Acta Biochim Pol; 1981; 28(1):51-9. PubMed ID: 6269337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine.
    Stern DF; Zheng P; Beidler DR; Zerillo C
    Mol Cell Biol; 1991 Feb; 11(2):987-1001. PubMed ID: 1899289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and properties of two protein kinases from yeast which phosphorylate casein and some ribosomal proteins.
    Kudlicki W; Grankowski N; Gasior E
    Eur J Biochem; 1978 Mar; 84(2):493-8. PubMed ID: 346349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ribosomal proteins phosphorylated in vitro by protein kinase activities from Krebs II ascites cells.
    McGarvey MJ; Leader DP
    Biosci Rep; 1983 Jul; 3(7):621-9. PubMed ID: 6578854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement for in vivo protein synthesis.
    Remacha M; Santos C; Bermejo B; Naranda T; Ballesta JP
    J Biol Chem; 1992 Jun; 267(17):12061-7. PubMed ID: 1601875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process.
    Ballesta JP; Rodriguez-Gabriel MA; Bou G; Briones E; Zambrano R; Remacha M
    FEMS Microbiol Rev; 1999 Oct; 23(5):537-50. PubMed ID: 10525165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for a highly specific protein kinase phosphorylating two strongly acidic proteins of yeast 60 S ribosomal subunit.
    Kudlicki W; Szyszka R; Paleń E; Gasior E
    Biochim Biophys Acta; 1980 Dec; 633(3):376-85. PubMed ID: 7011390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation of ribosomal proteins by ribosome-associated protein kinases of Trichosporon cutaneum.
    Wojda I; Cytryńska M; Jakubowicz T
    J Basic Microbiol; 1996; 36(5):363-9. PubMed ID: 8914268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a novel protein inhibitor of protein kinases specific to acidic ribosomal proteins.
    Pilecki M; Szyszka R
    Folia Histochem Cytobiol; 2001; 39 Suppl 2():91-2. PubMed ID: 11820643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and characterization of protein kinase CK2 from Candida albicans: evidence for the presence of two distinct regulatory subunits beta and beta'.
    Walz K; Pardo PS; Passeron S
    Arch Biochem Biophys; 1997 Apr; 340(2):347-54. PubMed ID: 9143340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ribosomal proteins P0, P1, and P2 are phosphorylated by casein kinase II at their conserved carboxyl termini.
    Hasler P; Brot N; Weissbach H; Parnassa AP; Elkon KB
    J Biol Chem; 1991 Jul; 266(21):13815-20. PubMed ID: 1856214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ABF1 Ser-720 is a predominant phosphorylation site for casein kinase II of Saccharomyces cerevisiae.
    Upton T; Wiltshire S; Francesconi S; Eisenberg S
    J Biol Chem; 1995 Jul; 270(27):16153-9. PubMed ID: 7608180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylation of yeast ribosomal proteins by CKI and CKII in the presence of heparin.
    Wojda I; Cytryńska M; Frajnt M; Jakubowicz T
    Acta Biochim Pol; 1999; 46(1):211-5. PubMed ID: 10453997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The highly acidic C-terminal region of the yeast initiation factor subunit 2 alpha (eIF-2 alpha) contains casein kinase phosphorylation sites and is essential for maintaining normal regulation of GCN4.
    van den Heuvel J; Lang V; Richter G; Price N; Peacock L; Proud C; McCarthy JE
    Biochim Biophys Acta; 1995 Apr; 1261(3):337-48. PubMed ID: 7742363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribosomal protein as substrate for a GTP-dependent protein kinase from yeast.
    Kudlicki W; Grankowski N; Gasior E
    Mol Biol Rep; 1976 Nov; 3(2):121-9. PubMed ID: 796685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribosomal acidic phosphoproteins P1 and P2 are not required for cell viability but regulate the pattern of protein expression in Saccharomyces cerevisiae.
    Remacha M; Jimenez-Diaz A; Bermejo B; Rodriguez-Gabriel MA; Guarinos E; Ballesta JP
    Mol Cell Biol; 1995 Sep; 15(9):4754-62. PubMed ID: 7651393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eukaryotic acidic phosphoproteins interact with the ribosome through their amino-terminal domain.
    Jose MP; Santana-Roman H; Remacha M; Ballesta JP; Zinker S
    Biochemistry; 1995 Jun; 34(24):7941-8. PubMed ID: 7794906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein kinases CKI and CKII are implicated in modification of ribosomal proteins of the yeast Trichosporon cutaneum.
    Wojda I; Cytryńska M; Frajnt M; Jakubowicz T
    Acta Biochim Pol; 2002; 49(4):947-57. PubMed ID: 12545201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and function of the stalk, a putative regulatory element of the yeast ribosome. Role of stalk protein phosphorylation.
    Rodriguez-Gabriel MA; Bou G; Briones E; Zambrano R; Remacha M; Ballesta JP
    Folia Microbiol (Praha); 1999; 44(2):153-63. PubMed ID: 10588050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.