These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 10588051)

  • 1. Aerobic growth and toxigenicity of Clostridium botulinum types A and B.
    Dezfulian M
    Folia Microbiol (Praha); 1999; 44(2):167-70. PubMed ID: 10588051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of irradiation on growth and toxigenicity of Clostridium botulinum types A and B inoculated onto chicken skins.
    Dezfulian M; Bartlett JG
    Appl Environ Microbiol; 1987 Jan; 53(1):201-3. PubMed ID: 3548590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unusually heavy contamination of honey products by Clostridium botulinum type F and Bacillus alvei.
    Nakano H; Sakaguchi G
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):171-7. PubMed ID: 1711989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of toxigenic Clostridium botulinum type E by enzyme immunoassay.
    Dezfulian M; Bartlett JG
    Diagn Microbiol Infect Dis; 1991; 14(1):11-5. PubMed ID: 2013205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay.
    Wictome M; Newton K; Jameson K; Hallis B; Dunnigan P; Mackay E; Clarke S; Taylor R; Gaze J; Foster K; Shone C
    Appl Environ Microbiol; 1999 Sep; 65(9):3787-92. PubMed ID: 10473376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid chemiluminescent slot blot immunoassay for the detection and quantification of Clostridium botulinum neurotoxin type E, in cultures.
    Cadieux B; Blanchfield B; Smith JP; Austin JW
    Int J Food Microbiol; 2005 May; 101(1):9-16. PubMed ID: 15878402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Growth of Clostridium botulinum in media with garlic (Allium sativum)].
    Giménez MA; Solanes RE; Giménez DF
    Rev Argent Microbiol; 1988; 20(1):17-24. PubMed ID: 3051126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxin production by Clostridium botulinum in grass.
    Notermans S; Kozaki S; van Schothorst M
    Appl Environ Microbiol; 1979 Nov; 38(5):767-71. PubMed ID: 44443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations on bacteriophages of Clostridium botulinum type C isolates from different sources and the role of certain phages in toxigenicity.
    Hariharan H; Mitchell WR
    Appl Environ Microbiol; 1976 Jul; 32(1):145-58. PubMed ID: 61735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effect of acetylsalicylic acid on Clostridium botulinum growth and toxin production.
    Ma L; Zhang G; Sobel J; Doyle MP
    J Food Prot; 2007 Dec; 70(12):2860-3. PubMed ID: 18095444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cultural and physiological characteristics of Clostridium botulinum type G and the susceptibility of certain animals to its toxin.
    Ciccarelli AS; Whaley DN; McCroskey LM; Gimenez DF; Dowell VR; Hatheway CL
    Appl Environ Microbiol; 1977 Dec; 34(6):843-8. PubMed ID: 74236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relation between toxicity and toxin-related-antigen contents of Clostridium botulinum types C and D cultures as determined by mouse bioassay and ELISA.
    Notermans S; Dufrenne J; Kozaki S
    Jpn J Med Sci Biol; 1982; 35(5-6):203-11. PubMed ID: 6761472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of Clostridium botulinum gas and protease production on culture conditions.
    Montville TJ
    Appl Environ Microbiol; 1983 Feb; 45(2):571-5. PubMed ID: 6338828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of culture conditions for toxin production of type G Clostridium botulinum.
    Calleri de Milan MC; Mayorga LS; Puig de Centorbi ON
    Zentralbl Bakteriol; 1992 Jul; 277(2):161-9. PubMed ID: 1520974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, quantitative PCR monitoring of growth of Clostridium botulinum type E in modified-atmosphere-packaged fish.
    Kimura B; Kawasaki S; Nakano H; Fujii T
    Appl Environ Microbiol; 2001 Jan; 67(1):206-16. PubMed ID: 11133447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a monoclonal antibody-based immunoassay for detecting type A Clostridium botulinum toxin produced in pure culture and an inoculated model cured meat system.
    Gibson AM; Modi NK; Roberts TA; Shone CC; Hambleton P; Melling J
    J Appl Bacteriol; 1987 Sep; 63(3):217-26. PubMed ID: 3323154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Toxigenicity and bacteriophage in Clostridium botulinum (author's transl)].
    Iida H
    Tanpakushitsu Kakusan Koso; 1976 Nov; Suppl():31-44. PubMed ID: 800280
    [No Abstract]   [Full Text] [Related]  

  • 18. Relative neurotoxin gene expression in clostridium botulinum type B, determined using quantitative reverse transcription-PCR.
    Lövenklev M; Holst E; Borch E; Rådström P
    Appl Environ Microbiol; 2004 May; 70(5):2919-27. PubMed ID: 15128552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stability of toxigenicity in Clostridium botulinum types C and D.
    Oguma K
    J Gen Microbiol; 1976 Jan; 92(1):67-75. PubMed ID: 1107486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective isolation and rapid identification of Clostridium botulinum types A and B by toxin detection.
    Dezfulian M; Bartlett JG
    J Clin Microbiol; 1985 Feb; 21(2):231-3. PubMed ID: 3882748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.