BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10588697)

  • 1. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop.
    Slotboom DJ; Sobczak I; Konings WN; Lolkema JS
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14282-7. PubMed ID: 10588697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural features of the glutamate transporter family.
    Slotboom DJ; Konings WN; Lolkema JS
    Microbiol Mol Biol Rev; 1999 Jun; 63(2):293-307. PubMed ID: 10357852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue.
    Zarbiv R; Grunewald M; Kavanaugh MP; Kanner BI
    J Biol Chem; 1998 Jun; 273(23):14231-7. PubMed ID: 9603927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate.
    Grunewald M; Kanner BI
    J Biol Chem; 2000 Mar; 275(13):9684-9. PubMed ID: 10734120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter.
    Zhang Y; Kanner BI
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1710-5. PubMed ID: 9990089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane topology of the C-terminal half of the neuronal, glial, and bacterial glutamate transporter family.
    Slotboom DJ; Lolkema JS; Konings WN
    J Biol Chem; 1996 Dec; 271(49):31317-21. PubMed ID: 8940138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1.
    Grunewald M; Menaker D; Kanner BI
    J Biol Chem; 2002 Jul; 277(29):26074-80. PubMed ID: 11994293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine-scanning mutagenesis reveals a highly amphipathic, pore-lining membrane-spanning helix in the glutamate transporter GltT.
    Slotboom DJ; Konings WN; Lolkema JS
    J Biol Chem; 2001 Apr; 276(14):10775-81. PubMed ID: 11148213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation.
    Seal RP; Amara SG
    Neuron; 1998 Dec; 21(6):1487-98. PubMed ID: 9883740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine Scanning Mutagenesis of TM4b-4c Loop of Glutamate Transporter EAAT1 Reveals Three Conformationally Sensitive Residues.
    Zhang W; Zhang X; Qu S
    Mol Pharmacol; 2018 Jul; 94(1):713-721. PubMed ID: 29654220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of glutamate transporters shows channel-like features.
    Slotboom DJ; Konings WN; Lolkema JS
    FEBS Lett; 2001 Mar; 492(3):183-6. PubMed ID: 11257491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-Induced Motion between TM4 and TM7 of the Glutamate Transporter EAAT1 Revealed by Paired Cysteine Mutagenesis.
    Zhang W; Zhang X; Qu S
    Mol Pharmacol; 2019 Jan; 95(1):33-42. PubMed ID: 30348896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity.
    Silverstein N; Sliman A; Stockner T; Kanner BI
    J Biol Chem; 2018 Sep; 293(37):14200-14209. PubMed ID: 30026234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turnover and accessibility of a reentrant loop of the Na+-glutamate transporter GltS are modulated by the central cytoplasmic loop.
    Krupnik T; Sobczak-Elbourne I; Lolkema JS
    Mol Membr Biol; 2011; 28(7-8):462-72. PubMed ID: 21995702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications.
    Kanai Y; Hediger MA
    Eur J Pharmacol; 2003 Oct; 479(1-3):237-47. PubMed ID: 14612154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of the N-terminal nucleotide binding domain of an ABC drug transporter of Candida albicans: uncommon cysteine 193 of Walker A is critical for ATP hydrolysis.
    Jha S; Karnani N; Dhar SK; Mukhopadhayay K; Shukla S; Saini P; Mukhopadhayay G; Prasad R
    Biochemistry; 2003 Sep; 42(36):10822-32. PubMed ID: 12962507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspartate-444 is essential for productive substrate interactions in a neuronal glutamate transporter.
    Teichman S; Kanner BI
    J Gen Physiol; 2007 Jun; 129(6):527-39. PubMed ID: 17535962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate 404 is involved in the substrate discrimination of GLT-1, a (Na+ + K+)-coupled glutamate transporter from rat brain.
    Pines G; Zhang Y; Kanner BI
    J Biol Chem; 1995 Jul; 270(29):17093-7. PubMed ID: 7615503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine scanning mutagenesis of transmembrane helix 3 of a brain glutamate transporter reveals two conformationally sensitive positions.
    Silverstein N; Crisman TJ; Forrest LR; Kanner BI
    J Biol Chem; 2013 Jan; 288(2):964-73. PubMed ID: 23188832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.