BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 10588747)

  • 1. Neuropeptide release by efficient recruitment of diffusing cytoplasmic secretory vesicles.
    Han W; Ng YK; Axelrod D; Levitan ES
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14577-82. PubMed ID: 10588747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal peptide release is limited by secretory granule mobility.
    Burke NV; Han W; Li D; Takimoto K; Watkins SC; Levitan ES
    Neuron; 1997 Nov; 19(5):1095-102. PubMed ID: 9390522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport, docking and exocytosis of single secretory granules in live chromaffin cells.
    Steyer JA; Horstmann H; Almers W
    Nature; 1997 Jul; 388(6641):474-8. PubMed ID: 9242406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unexpected mobility variation among individual secretory vesicles produces an apparent refractory neuropeptide pool.
    Ng YK; Lu X; Gulacsi A; Han W; Saxton MJ; Levitan ES
    Biophys J; 2003 Jun; 84(6):4127-34. PubMed ID: 12770915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM).
    Oheim M; Loerke D; Stühmer W; Chow RH
    Eur Biophys J; 1998; 27(2):83-98. PubMed ID: 9530824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and spatial segregation of secretory vesicle pools according to vesicle age.
    Duncan RR; Greaves J; Wiegand UK; Matskevich I; Bodammer G; Apps DK; Shipston MJ; Chow RH
    Nature; 2003 Mar; 422(6928):176-80. PubMed ID: 12634788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A confocal study on the visualization of chromaffin cell secretory vesicles with fluorescent targeted probes and acidic dyes.
    Moreno A; SantoDomingo J; Fonteriz RI; Lobatón CD; Montero M; Alvarez J
    J Struct Biol; 2010 Dec; 172(3):261-9. PubMed ID: 20600953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nerve growth factor-induced differentiation changes the cellular organization of regulated Peptide release by PC12 cells.
    Ng YK; Lu X; Watkins SC; Ellis-Davies GC; Levitan ES
    J Neurosci; 2002 May; 22(10):3890-7. PubMed ID: 12019308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of peptidergic vesicle mobility by secretagogues.
    Washburn CL; Bean JE; Silverman MA; Pellegrino MJ; Yates PA; Allen RG
    Traffic; 2002 Nov; 3(11):801-9. PubMed ID: 12383346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The F-actin cytoskeleton modulates slow secretory components rather than readily releasable vesicle pools in bovine chromaffin cells.
    Gil A; Rueda J; Viniegra S; Gutiérrez LM
    Neuroscience; 2000; 98(3):605-14. PubMed ID: 10869854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells.
    Camacho M; Machado JD; Alvarez J; Borges R
    J Biol Chem; 2008 Aug; 283(33):22383-9. PubMed ID: 18562320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endocrine secretory granules and neuronal synaptic vesicles have three integral membrane proteins in common.
    Lowe AW; Madeddu L; Kelly RB
    J Cell Biol; 1988 Jan; 106(1):51-9. PubMed ID: 3276713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical mobilization of secretory vesicles facilitates neuropeptide release by nerve growth factor-differentiated PC12 cells.
    Ng YK; Lu X; Levitan ES
    J Physiol; 2002 Jul; 542(Pt 2):395-402. PubMed ID: 12122140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules.
    McFerran BW; Graham ME; Burgoyne RD
    J Biol Chem; 1998 Aug; 273(35):22768-72. PubMed ID: 9712909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking of secretory vesicles of PC12 cells by total internal reflection fluorescence microscopy.
    Yang DM; Huang CC; Lin HY; Tsai DP; Kao LS; Chi CW; Lin CC
    J Microsc; 2003 Mar; 209(Pt 3):223-7. PubMed ID: 12641766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulated release of fluorescently labeled IgE fragments that efficiently accumulate in secretory granules after endocytosis in RBL-2H3 mast cells.
    Xu K; Williams RM; Holowka D; Baird B
    J Cell Sci; 1998 Aug; 111 ( Pt 16)():2385-96. PubMed ID: 9683633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium requirements for exocytosis do not delimit the releasable neuropeptide pool.
    Lu X; Ellis-Davies GC; Levitan ES
    Cell Calcium; 2003 Apr; 33(4):267-71. PubMed ID: 12618147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying neuronal peptide release and secretory granule dynamics with green fluorescent protein.
    Levitan ES
    Methods; 1998 Oct; 16(2):182-7. PubMed ID: 9790864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells.
    Giner D; López I; Villanueva J; Torres V; Viniegra S; Gutiérrez LM
    Neuroscience; 2007 May; 146(2):659-69. PubMed ID: 17395387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of green fluorescent protein to neuroendocrine secretory granules: a new tool for real time studies of regulated protein secretion.
    Kaether C; Salm T; Glombik M; Almers W; Gerdes HH
    Eur J Cell Biol; 1997 Oct; 74(2):133-42. PubMed ID: 9352218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.