These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10588753)

  • 1. Horizontal cells reveal cone type-specific adaptation in primate retina.
    Lee BB; Dacey DM; Smith VC; Pokorny J
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14611-6. PubMed ID: 10588753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primate horizontal cell dynamics: an analysis of sensitivity regulation in the outer retina.
    Smith VC; Pokorny J; Lee BB; Dacey DM
    J Neurophysiol; 2001 Feb; 85(2):545-58. PubMed ID: 11160492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horizontal cells of the primate retina: cone specificity without spectral opponency.
    Dacey DM; Lee BB; Stafford DK; Pokorny J; Smith VC
    Science; 1996 Feb; 271(5249):656-9. PubMed ID: 8571130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina.
    Tuten WS; Harmening WM; Sabesan R; Roorda A; Sincich LC
    J Neurosci; 2017 Sep; 37(39):9498-9509. PubMed ID: 28871030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina.
    Dacey DM; Diller LC; Verweij J; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2000 Mar; 17(3):589-96. PubMed ID: 10708040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-cone photoreceptors in the primate retina are functionally distinct from L and M cones.
    Baudin J; Angueyra JM; Sinha R; Rieke F
    Elife; 2019 Jan; 8():. PubMed ID: 30672735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light adaptation in cone vision involves switching between receptor and post-receptor sites.
    Dunn FA; Lankheet MJ; Rieke F
    Nature; 2007 Oct; 449(7162):603-6. PubMed ID: 17851533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circuitry for color coding in the primate retina.
    Dacey DM
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):582-8. PubMed ID: 8570599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea.
    Bumsted K; Hendrickson A
    J Comp Neurol; 1999 Jan; 403(4):502-16. PubMed ID: 9888315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of sensitivity regulation in primate outer retina: the horizontal cell network.
    Lee BB; Dacey DM; Smith VC; Pokorny J
    J Vis; 2003; 3(7):513-26. PubMed ID: 14507256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina.
    Goodchild AK; Chan TL; Grünert U
    Vis Neurosci; 1996; 13(5):833-45. PubMed ID: 8903027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic center-surround receptive field model of monkey H1 horizontal cells.
    Packer OS; Dacey DM
    J Vis; 2005 Dec; 5(11):1038-54. PubMed ID: 16441201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-cone connections of the diffuse bipolar cell type DB6 in macaque monkey retina.
    Lee SC; Jusuf PR; Grünert U
    J Comp Neurol; 2004 Jun; 474(3):353-63. PubMed ID: 15174079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal expression of cone opsins during monkey retinal development.
    Bumsted K; Jasoni C; Szél A; Hendrickson A
    J Comp Neurol; 1997 Feb; 378(1):117-34. PubMed ID: 9120051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional properties of spontaneous excitatory currents and encoding of light/dark transitions in horizontal cells of the mouse retina.
    Feigenspan A; Babai N
    Eur J Neurosci; 2015 Nov; 42(9):2615-32. PubMed ID: 26173960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural sensitization improves encoding fidelity in the primate retina.
    Appleby TR; Manookin MB
    Nat Commun; 2019 Sep; 10(1):4017. PubMed ID: 31488831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial order in short-wavelength-sensitive cone photoreceptors: a comparative study of the primate retina.
    Martin PR; Grünert U; Chan TL; Bumsted K
    J Opt Soc Am A Opt Image Sci Vis; 2000 Mar; 17(3):557-67. PubMed ID: 10708037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pH buffering on horizontal and ganglion cell light responses in primate retina: evidence for the proton hypothesis of surround formation.
    Davenport CM; Detwiler PB; Dacey DM
    J Neurosci; 2008 Jan; 28(2):456-64. PubMed ID: 18184788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial absorption of short wavelength light drives primate blue retinal cones into glycolysis which may increase their pace of aging.
    Kam JH; Weinrich TW; Sangha H; Powner MB; Fosbury R; Jeffery G
    Vis Neurosci; 2019 Jan; 36():E007. PubMed ID: 31199213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.