BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 10588904)

  • 1. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution.
    Smith CA; Toogood HS; Baker HM; Daniel RM; Baker EN
    J Mol Biol; 1999 Dec; 294(4):1027-40. PubMed ID: 10588904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease.
    Bian Y; Liang X; Fang N; Tang XF; Tang B; Shen P; Peng Z
    FEBS Lett; 2006 Oct; 580(25):6007-14. PubMed ID: 17052711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of Ak.1 protease, a thermostable subtilisin with a disulphide bond in the substrate-binding cleft.
    Toogood HS; Smith CA; Baker EN; Daniel RM
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):321-8. PubMed ID: 10926860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state.
    Almog O; González A; Godin N; de Leeuw M; Mekel MJ; Klein D; Braun S; Shoham G; Walter RL
    Proteins; 2009 Feb; 74(2):489-96. PubMed ID: 18655058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.
    Arnórsdóttir J; Kristjánsson MM; Ficner R
    FEBS J; 2005 Feb; 272(3):832-45. PubMed ID: 15670163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.
    Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C
    J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Crystal structure of thermitase and stability of subtilisins].
    Tepliakov AV; Kuranova IP; Arutiunian EG; Frömmel C; Höhne WE
    Bioorg Khim; 1990 Apr; 16(4):437-47. PubMed ID: 2198028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 A resolution.
    Machius M; Wiegand G; Huber R
    J Mol Biol; 1995 Mar; 246(4):545-59. PubMed ID: 7877175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence regions of Bacilli metalloproteinases that can affect enzyme thermostability.
    Strongin A; Kostrov S; Kaydalova N
    Protein Seq Data Anal; 1991 Dec; 4(6):355-61. PubMed ID: 1812491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystallographic structure of the subtilisin protease from Penicillium cyclopium.
    Koszelak S; Ng JD; Day J; Ko TP; Greenwood A; McPherson A
    Biochemistry; 1997 Jun; 36(22):6597-604. PubMed ID: 9184139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics-driven, rational engineering of protein thermostability.
    Ditursi MK; Kwon SJ; Reeder PJ; Dordick JS
    Protein Eng Des Sel; 2006 Nov; 19(11):517-24. PubMed ID: 17003065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of thermal stability of subtilisin J by changing the primary autolysis site.
    Bae KH; Jang JS; Park KS; Lee SH; Byun SM
    Biochem Biophys Res Commun; 1995 Feb; 207(1):20-4. PubMed ID: 7857265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies.
    Gruber K; Klintschar G; Hayn M; Schlacher A; Steiner W; Kratky C
    Biochemistry; 1998 Sep; 37(39):13475-85. PubMed ID: 9753433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 A resolution.
    Jain SC; Shinde U; Li Y; Inouye M; Berman HM
    J Mol Biol; 1998 Nov; 284(1):137-44. PubMed ID: 9811547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering thermostability in subtilisin BPN' by in vitro mutagenesis.
    Rollence ML; Filpula D; Pantoliano MW; Bryan PN
    Crit Rev Biotechnol; 1988; 8(3):217-24. PubMed ID: 3145814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis.
    Priyadharshini R; Gunasekaran P
    Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis: requirement of a C-terminal beta-jelly roll domain for hyperstability.
    Foophow T; Tanaka S; Angkawidjaja C; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2010 Jul; 400(4):865-77. PubMed ID: 20595040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.