These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 10588931)

  • 1. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl.
    Behan WM; McDonald M; Darlington LG; Stone TW
    Br J Pharmacol; 1999 Dec; 128(8):1754-60. PubMed ID: 10588931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species.
    Stone TW; Behan WM; MacDonald M; Darlington LG
    Amino Acids; 2000; 19(1):275-81. PubMed ID: 11026499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced neuronal damage by co-administration of quinolinic acid and free radicals, and protection by adenosine A2A receptor antagonists.
    Behan WM; Stone TW
    Br J Pharmacol; 2002 Mar; 135(6):1435-42. PubMed ID: 11906956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin neutralizes neurotoxicity induced by quinolinic acid in brain tissue culture.
    Vega-Naredo I; Poeggeler B; Sierra-Sánchez V; Caballero B; Tomás-Zapico C; Alvarez-García O; Tolivia D; Rodríguez-Colunga MJ; Coto-Montes A
    J Pineal Res; 2005 Oct; 39(3):266-75. PubMed ID: 16150107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melatonin plays a protective role in quinolinic acid-induced neurotoxicity in the rat hippocampus.
    Southgate GS; Daya S; Potgieter B
    J Chem Neuroanat; 1998 Jun; 14(3-4):151-6. PubMed ID: 9704893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats.
    Pérez-Severiano F; Rodríguez-Pérez M; Pedraza-Chaverrí J; Maldonado PD; Medina-Campos ON; Ortíz-Plata A; Sánchez-García A; Villeda-Hernández J; Galván-Arzate S; Aguilera P; Santamaría A
    Neurochem Int; 2004 Dec; 45(8):1175-83. PubMed ID: 15380627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion.
    Khaldy H; Escames G; León J; Bikjdaouene L; Acuña-Castroviejo D
    Neurobiol Aging; 2003; 24(3):491-500. PubMed ID: 12600724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-steroidal anti-inflammatory agents, tolmetin and sulindac, attenuate oxidative stress in rat brain homogenate and reduce quinolinic acid-induced neurodegeneration in rat hippocampal neurons.
    Dairam A; Chetty P; Daya S
    Metab Brain Dis; 2006 Sep; 21(2-3):221-33. PubMed ID: 16850258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist.
    Stone TW; Behan WM
    J Neurosci Res; 2007 Apr; 85(5):1077-85. PubMed ID: 17304576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of kynurenines in the neurotoxic actions of kainic acid.
    Behan WM; Stone TW
    Br J Pharmacol; 2000 Apr; 129(8):1764-70. PubMed ID: 10780984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin reduces oxidative neurotoxicity due to quinolinic acid: in vitro and in vivo findings.
    Cabrera J; Reiter RJ; Tan DX; Qi W; Sainz RM; Mayo JC; Garcia JJ; Kim SJ; El-Sokkary G
    Neuropharmacology; 2000 Jan; 39(3):507-14. PubMed ID: 10698016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melatonin reduces quinolinic acid-induced lipid peroxidation in rat brain homogenate.
    Southgate G; Daya S
    Metab Brain Dis; 1999 Sep; 14(3):165-71. PubMed ID: 10646692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine.
    Silva-Adaya D; Pérez-De La Cruz V; Herrera-Mundo MN; Mendoza-Macedo K; Villeda-Hernández J; Binienda Z; Ali SF; Santamaría A
    J Neurochem; 2008 May; 105(3):677-89. PubMed ID: 18194214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III).
    Pérez-De La Cruz V; González-Cortés C; Galván-Arzate S; Medina-Campos ON; Pérez-Severiano F; Ali SF; Pedraza-Chaverrí J; Santamaría A
    Neuroscience; 2005; 135(2):463-74. PubMed ID: 16111817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (-)-deprenyl and melatonin treatments.
    Tang YP; Ma YL; Chao CC; Chen KY; Lee EH
    J Neurosci Res; 1998 Sep; 53(5):593-604. PubMed ID: 9726430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of placing micro-implants of melatonin in striatum on oxidative stress and neuronal damage mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors.
    Kim HJ; Kwon JS
    Arch Pharm Res; 1999 Feb; 22(1):35-43. PubMed ID: 10071957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effects of melatonin against ethanol-induced reactive gliosis in hippocampus and cortex of young and aged rats.
    Baydas G; Tuzcu M
    Exp Neurol; 2005 Jul; 194(1):175-81. PubMed ID: 15899254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probucol modulates oxidative stress and excitotoxicity in Huntington's disease models in vitro.
    Colle D; Hartwig JM; Soares FA; Farina M
    Brain Res Bull; 2012 Mar; 87(4-5):397-405. PubMed ID: 22245028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats.
    Shagirtha K; Muthumani M; Prabu SM
    Eur Rev Med Pharmacol Sci; 2011 Sep; 15(9):1039-50. PubMed ID: 22013727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative analysis of the neuroprotective properties of competitive and uncompetitive N-methyl-D-aspartate receptor antagonists in vivo: implications for the process of excitotoxic degeneration and its therapy.
    Massieu L; Thedinga KH; McVey M; Fagg GE
    Neuroscience; 1993 Aug; 55(4):883-92. PubMed ID: 7694181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.