BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10589280)

  • 1. [Minimal residual disease. Methodologies and clinical implications].
    Ortega M; Coll MD; Solé F; Caballín MR
    Sangre (Barc); 1999 Aug; 44(4):283-90. PubMed ID: 10589280
    [No Abstract]   [Full Text] [Related]  

  • 2. Minimal residual disease in hematologic malignancies.
    San-Miguel JF; Bartram C; Campana D; Andreeff M
    Rev Invest Clin; 1994 Apr; Suppl():147-52. PubMed ID: 7886299
    [No Abstract]   [Full Text] [Related]  

  • 3. Detection of recurrent translocations using real time PCR; assessment of the technique for diagnosis and detection of minimal residual disease.
    Gabert J
    Haematologica; 1999 Jun; 84 Suppl EHA-4():107-9. PubMed ID: 10907485
    [No Abstract]   [Full Text] [Related]  

  • 4. [Minimal residual disease in malignant diseases of the blood I. Background and pre-clinical validation].
    Hokland P; Nyvold CG; Stentoft J; Ommen HB; Ebbesen LH; Braendstrup K; Andersen BL; Mikkelsen LS; Ostergaard M
    Ugeskr Laeger; 2009 Jan; 171(4):229-31. PubMed ID: 19174037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of minimal residual disease in adult Ph1 positive acute lymphoblastic leukemia by a combination of cell sorting and fluorescence in situ hybridization: a preliminary study on 6 cases.
    Cambier N; Soenen-Cornu V; Laï JL; Cosson A; Fenaux P; Preudhomme C
    Haematologica; 2000 Jun; 85(6):664-5. PubMed ID: 10870127
    [No Abstract]   [Full Text] [Related]  

  • 6. [A minimal residual population of leukemic cells in patients with acute myeloid leukemias].
    Gal'tseva IV; Parovichnikova EN; Savchenko VG
    Ter Arkh; 1997; 69(7):74-9. PubMed ID: 9424769
    [No Abstract]   [Full Text] [Related]  

  • 7. Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations.
    Böttcher S; Ritgen M; Buske S; Gesk S; Klapper W; Hoster E; Hiddemann W; Unterhalt M; Dreyling M; Siebert R; Kneba M; Pott C;
    Haematologica; 2008 Apr; 93(4):551-9. PubMed ID: 18379010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined use of reverse transcriptase polymerase chain reaction and flow cytometry to study minimal residual disease in Philadelphia positive acute lymphoblastic leukemia.
    Muñoz L; López O; Martino R; Brunet S; Bellido M; Rubiol E; Sierra J; Nomdedéu JF
    Haematologica; 2000 Jul; 85(7):704-10. PubMed ID: 10897122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined cell sorting and FISH for detection of minimal residual disease in bone marrow of children with acute leukemia or solid tumors.
    Sainati L; Spinelli M; Leszl A; Cocito MG; Stella M; Basso G
    Eur J Histochem; 1997; 41 Suppl 2():167-8. PubMed ID: 9859833
    [No Abstract]   [Full Text] [Related]  

  • 10. Minimal residual disease detection in hairy cell leukemia. Comparison of flow cytometric immunophenotyping with clonal analysis using consensus primer polymerase chain reaction for the heavy chain gene.
    Sausville JE; Salloum RG; Sorbara L; Kingma DW; Raffeld M; Kreitman RJ; Imus PD; Venzon D; Stetler-Stevenson M
    Am J Clin Pathol; 2003 Feb; 119(2):213-7. PubMed ID: 12579991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of minimal residual disease (MRD) estimated by flow cytometry and by real-time quantitative PCR of Wilms tumor gene 1 (WT1) transcript expression in children with acute lymphoblastic leukemia.
    Chen JS; Hsiao CC; Sheen JM; Cheng CN
    Leuk Res; 2007 Oct; 31(10):1351-7. PubMed ID: 17445885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal residual disease testing of acute leukemia by flow cytometry immunophenotyping: a retrospective comparison of detection rates with flow cytometry DNA ploidy or FISH-based methods.
    Zwick D; Cooley L; Hetherington M
    Lab Hematol; 2006; 12(2):75-81. PubMed ID: 16751134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Spectral karyotyping (SKY) principle, avantages and limitations].
    Belaud-Rotureau MA; Elghezal H; Bernardin C; Sanlaville D; Radford-Weiss I; Raoul O; Vekemans M; Romana SP
    Ann Biol Clin (Paris); 2003; 61(2):139-46. PubMed ID: 12702468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Minimal residual disease in hematology].
    Rák K
    Orv Hetil; 2001 May; 142(21):1091-5. PubMed ID: 11449837
    [No Abstract]   [Full Text] [Related]  

  • 15. Monitoring minimal residual disease in pediatric hematologic malignancies.
    Campana D
    Clin Adv Hematol Oncol; 2007 Nov; 5(11):876-7, 915. PubMed ID: 18185484
    [No Abstract]   [Full Text] [Related]  

  • 16. [Chromosome analysis of and genetic testing for myeloid leukemia].
    Yokota H; Yatomi Y
    Nihon Rinsho; 2009 Oct; 67(10):1911-5. PubMed ID: 19860189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphenotypic acute leukemia with t(15;17).
    Scolnik MP; Aranguren PN; Cuello MT; Palacios MF; Sanjurjo J; Giunta M; Bracco MM; Acevedo S
    Leuk Lymphoma; 2005 Apr; 46(4):607-10. PubMed ID: 16019491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Philadelphia chromosome-positive blastic plasmacytoid dendritic cell leukemia.
    Adams RL; McCarthy C; Bird RJ
    Cancer Genet Cytogenet; 2009 Dec; 195(2):186-8. PubMed ID: 19963123
    [No Abstract]   [Full Text] [Related]  

  • 19. [Minimal residual disease in childhood acute leukemias].
    Pawińska K; Balwierz W; Baran J
    Przegl Lek; 2006; 63(1):41-3. PubMed ID: 16892899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Applications of fluorescence in situ hybridization in the study of hematologic neoplasms].
    Hernández JM; Tabernero MD; García JL
    Sangre (Barc); 1996 Aug; 41(4):305-9. PubMed ID: 8984672
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.