These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 10589482)
21. Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. Gillis EH; Gosling JP; Sreenan JM; Kane M J Immunol Methods; 2002 Sep; 267(2):131-8. PubMed ID: 12165434 [TBL] [Abstract][Full Text] [Related]
22. A novel fluorescence immunoassay based on AgNCs and ALP for ultrasensitive detection of sulfamethazine (SMZ) in environmental and biological samples. Zhu N; Zhu Y; Wang J; Gyimah E; Hu X; Zhang Z Talanta; 2019 Jul; 199():72-79. PubMed ID: 30952318 [TBL] [Abstract][Full Text] [Related]
23. Production and characterization of polyclonal antibodies to sulfamethazine and their potential use in immunoaffinity chromatography for urine sample pre-treatment. Crabbe P; Haasnoot W; Kohen F; Salden M; Van Peteghem C Analyst; 1999 Nov; 124(11):1569-75. PubMed ID: 10746315 [TBL] [Abstract][Full Text] [Related]
24. Competitive direct enzyme-linked immunosorbent screening assay for the detection of sulfamethazine contamination of animal feeds. Dixon-Holland DE; Katz SE J Assoc Off Anal Chem; 1991; 74(5):784-9. PubMed ID: 1783586 [TBL] [Abstract][Full Text] [Related]
25. Portable surface plasmon resonance immunosensor for the detection of fluoroquinolone antibiotic residues in milk. Fernández F; Pinacho DG; Sánchez-Baeza F; Marco MP J Agric Food Chem; 2011 May; 59(9):5036-43. PubMed ID: 21476576 [TBL] [Abstract][Full Text] [Related]
26. Characterization and application of quantum dot nanocrystal-monoclonal antibody conjugates for the determination of sulfamethazine in milk by fluoroimmunoassay. Shen J; Xu F; Jiang H; Wang Z; Tong J; Guo P; Ding S Anal Bioanal Chem; 2007 Dec; 389(7-8):2243-50. PubMed ID: 17899028 [TBL] [Abstract][Full Text] [Related]
27. Application of quantum dot-antibody conjugates for detection of sulfamethazine residue in chicken muscle tissue. Ding S; Chen J; Jiang H; He J; Shi W; Zhao W; Shen J J Agric Food Chem; 2006 Aug; 54(17):6139-42. PubMed ID: 16910698 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of three different microbial inhibition tests for the detection of sulphamethazine residues in the edible tissues of rabbit. Kozárová I; Janosová J; Máté D; Tkáciková S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Jul; 26(7):978-87. PubMed ID: 19680973 [TBL] [Abstract][Full Text] [Related]
29. Immunochromatographic assay based on time-resolved fluorescent nanobeads for the rapid detection of sulfamethazine in egg, honey, and pork. Wang Z; Hu S; Bao H; Xing K; Liu J; Xia J; Lai W; Peng J J Sci Food Agric; 2021 Jan; 101(2):684-692. PubMed ID: 32705699 [TBL] [Abstract][Full Text] [Related]
30. Biosensor immunoassay for flumequine in broiler serum and muscle. Haasnoot W; Gerçek H; Cazemier G; Nielen MW Anal Chim Acta; 2007 Mar; 586(1-2):312-8. PubMed ID: 17386729 [TBL] [Abstract][Full Text] [Related]
31. Development of a sensitive monoclonal antibody-based ELISA for the detection of sulfamethazine in cow milk, honey, and swine urine. Yang T; Ren X; Li Y; Chen F Hybridoma (Larchmt); 2010 Oct; 29(5):403-7. PubMed ID: 21050040 [TBL] [Abstract][Full Text] [Related]
32. The development and validation of a sensitive, dual-flow cell, SPR-based biosensor immunoassay for the detection, semi-quantitation, and characterization of antibodies to darbepoetin alfa and epoetin alfa in human serum. Mytych DT; La S; Barger T; Ferbas J; Swanson SJ J Pharm Biomed Anal; 2009 Feb; 49(2):415-26. PubMed ID: 19135328 [TBL] [Abstract][Full Text] [Related]
33. Sulphonamide and dapsone residues in bovine milk following intramammary infusion. Roudaut B; Garnier M Food Addit Contam; 1993; 10(4):461-8. PubMed ID: 8405585 [TBL] [Abstract][Full Text] [Related]
34. Universal simultaneous multiplex ELISA of small molecules in milk based on dual luciferases. Yu X; Zhang X; Wang Z; Jiang H; Lv Z; Shen J; Xia G; Wen K Anal Chim Acta; 2018 Feb; 1001():125-133. PubMed ID: 29291795 [TBL] [Abstract][Full Text] [Related]
35. Development of a biosensor immunoassay for the quantification of alphas1-casein in milk. Muller-Renaud S; Dupont D; Dulieu P J Dairy Res; 2005 Feb; 72(1):57-64. PubMed ID: 15747732 [TBL] [Abstract][Full Text] [Related]
36. An SPR biosensor for the detection of microcystins in drinking water. Herranz S; Bocková M; Marazuela MD; Homola J; Moreno-Bondi MC Anal Bioanal Chem; 2010 Nov; 398(6):2625-34. PubMed ID: 20532874 [TBL] [Abstract][Full Text] [Related]
37. Determination of sulfamethazine and trimethoprim in liquid feed premixes by HPLC and diode array detection, with an analysis of the uncertainty of the analytical results. Cancho Grande B; García Falcón MS; Rodríguez Comesaña M; Simal Gándara J J Agric Food Chem; 2001 Jul; 49(7):3145-50. PubMed ID: 11453744 [TBL] [Abstract][Full Text] [Related]
38. Adsorptive-stripping determination of sulfamethazine in milk. Ng WY; Wong SK J AOAC Int; 1993; 76(3):540-3. PubMed ID: 8318845 [TBL] [Abstract][Full Text] [Related]
39. Improvements to a surface plasmon resonance-based immunoassay for the steroid hormone progesterone. Gillis EH; Traynor I; Gosling JP; Kane M J AOAC Int; 2006; 89(3):838-42. PubMed ID: 16792083 [TBL] [Abstract][Full Text] [Related]
40. Enzyme-linked immunoassay based on imprinted microspheres for the detection of sulfamethazine residue. Peng D; Li Z; Wang Y; Liu Z; Sheng F; Yuan Z J Chromatogr A; 2017 Jul; 1506():9-17. PubMed ID: 28545731 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]