These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10589870)

  • 1. Asynchrony between subtalar and knee joint function during running.
    Stergiou N; Bates BT; James SL
    Med Sci Sports Exerc; 1999 Nov; 31(11):1645-55. PubMed ID: 10589870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subtalar and knee joint interaction during running at various stride lengths.
    Stergiou N; Bates BT; Kurz MJ
    J Sports Med Phys Fitness; 2003 Sep; 43(3):319-26. PubMed ID: 14625513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of subtalar joint position on dorsiflexion of the ankle/rearfoot versus midfoot/forefoot during gastrocnemius stretching.
    Johanson MA; DeArment A; Hines K; Riley E; Martin M; Thomas J; Geist K
    Foot Ankle Int; 2014 Jan; 35(1):63-70. PubMed ID: 24259750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of changing foot progression angle using real-time visual feedback on rearfoot eversion during running.
    Mousavi SH; van Kouwenhove L; Rajabi R; Zwerver J; Hijmans JM
    PLoS One; 2021; 16(2):e0246425. PubMed ID: 33566828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.
    Eslami M; Begon M; Hinse S; Sadeghi H; Popov P; Allard P
    J Sci Med Sport; 2009 Nov; 12(6):679-84. PubMed ID: 18768360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position of the subtalar joint axis and resistance of the rearfoot to supination.
    Payne C; Munteanu S; Miller K
    J Am Podiatr Med Assoc; 2003; 93(2):131-5. PubMed ID: 12644520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cumulative loads increase at the knee joint with slow-speed running compared to faster running: a biomechanical study.
    Petersen J; Sørensen H; Nielsen RØ
    J Orthop Sports Phys Ther; 2015 Apr; 45(4):316-22. PubMed ID: 25552288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of self-organizing maps to study sex- and speed-dependent changes in running biomechanics.
    Aljohani M; Kipp K
    Hum Mov Sci; 2020 Aug; 72():102649. PubMed ID: 32721369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of increases in knee and ankle joint moments following an increase in running speed from 8 to 12 to 16km·h(-1.).
    Petersen J; Nielsen RO; Rasmussen S; Sørensen H
    Clin Biomech (Bristol, Avon); 2014 Nov; 29(9):959-64. PubMed ID: 25242200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion-eversion.
    Goto A; Moritomo H; Itohara T; Watanabe T; Sugamoto K
    Foot Ankle Int; 2009 May; 30(5):432-8. PubMed ID: 19439144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Timing of lower extremity joint actions during treadmill running.
    Hamill J; Bates BT; Holt KG
    Med Sci Sports Exerc; 1992 Jul; 24(7):807-13. PubMed ID: 1501566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of foot structure on the three-dimensional kinematic coupling behavior of the leg and rear foot.
    Nawoczenski DA; Saltzman CL; Cook TM
    Phys Ther; 1998 Apr; 78(4):404-16. PubMed ID: 9555923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-joint coordination patterns differ between younger and older runners.
    Harrison K; Kwon YU; Sima A; Thakkar B; Crosswell G; Morgan J; Blaise Williams DS
    Hum Mov Sci; 2019 Apr; 64():164-170. PubMed ID: 30738343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of Internal Tibial Forces and Moments to Static Optimization Moment Constraints at the Subtalar and Ankle Joints.
    Baggaley M; Derrick TR; Brent Edwards W
    J Biomech Eng; 2023 Jan; 145(1):. PubMed ID: 35864788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The collision forces and lower-extremity inter-joint coordination during running.
    Wang LI; Gu CY; Wang IL; Siao SW; Chen ST
    Sports Biomech; 2018 Jun; 17(2):143-156. PubMed ID: 28632060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased medial longitudinal arch mobility, lower extremity kinematics, and ground reaction forces in high-arched runners.
    Williams DS; Tierney RN; Butler RJ
    J Athl Train; 2014; 49(3):290-6. PubMed ID: 24840580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subtalar pronation--relationship to the medial longitudinal arch loading in the normal foot.
    Arangio GA; Phillippy DC; Xiao D; Gu WK; Salathe EP
    Foot Ankle Int; 2000 Mar; 21(3):216-20. PubMed ID: 10739152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical analysis of the landing phase in heel-toe running.
    Bobbert MF; Yeadon MR; Nigg BM
    J Biomech; 1992 Mar; 25(3):223-34. PubMed ID: 1564058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of simulated genu valgum and genu varum on ground reaction forces and subtalar joint function during gait.
    Van Gheluwe B; Kirby KA; Hagman F
    J Am Podiatr Med Assoc; 2005; 95(6):531-41. PubMed ID: 16291844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ability of sagittal kinematic variables to estimate ground reaction forces and joint kinetics in running.
    Wille CM; Lenhart RL; Wang S; Thelen DG; Heiderscheit BC
    J Orthop Sports Phys Ther; 2014 Oct; 44(10):825-30. PubMed ID: 25156183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.