These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 10590301)

  • 1. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity.
    Sitaram N; Nagaraj R
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):29-54. PubMed ID: 10590301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells.
    Dathe M; Wieprecht T
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):71-87. PubMed ID: 10590303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes.
    Matsuzaki K
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):1-10. PubMed ID: 10590299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides.
    Shai Y
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):55-70. PubMed ID: 10590302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers.
    La Rocca P; Biggin PC; Tieleman DP; Sansom MS
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):185-200. PubMed ID: 10590308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host-defense antimicrobial peptides: importance of structure for activity.
    Sitaram N; Nagaraj R
    Curr Pharm Des; 2002; 8(9):727-42. PubMed ID: 11945168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of antimicrobial peptides and their mechanisms of action.
    Epand RM; Vogel HJ
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):11-28. PubMed ID: 10590300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide-bilayer interactions:- simulation studies.
    La Rocca P; Sansom MS
    Biochem Soc Trans; 1998 Aug; 26(3):S302. PubMed ID: 9766021
    [No Abstract]   [Full Text] [Related]  

  • 10. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy.
    Bechinger B
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):157-83. PubMed ID: 10590307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.
    Mani R; Waring AJ; Hong M
    Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides.
    Fehlbaum P; Bulet P; Chernysh S; Briand JP; Roussel JP; Letellier L; Hetru C; Hoffmann JA
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1221-5. PubMed ID: 8577744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of the Mechanism of Action of Amphibian Antimicrobial Peptides Focusing on Peptide-Membrane Interaction and Membrane Curvature.
    Vineeth Kumar TV; Sanil G
    Curr Protein Pept Sci; 2017; 18(12):1263-1272. PubMed ID: 28699512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli.
    Wu M; Maier E; Benz R; Hancock RE
    Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of disulfide linkages in tachyplesin-lipid interactions.
    Matsuzaki K; Nakayama M; Fukui M; Otaka A; Funakoshi S; Fujii N; Bessho K; Miyajima K
    Biochemistry; 1993 Nov; 32(43):11704-10. PubMed ID: 8218239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds.
    Rao AG
    Arch Biochem Biophys; 1999 Jan; 361(1):127-34. PubMed ID: 9882437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity analysis of brevinin 1E amide, an antimicrobial peptide from Rana esculenta.
    Kwon MY; Hong SY; Lee KH
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):239-48. PubMed ID: 9748603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin.
    Bai Y; Liu S; Jiang P; Zhou L; Li J; Tang C; Verma C; Mu Y; Beuerman RW; Pervushin K
    Biochemistry; 2009 Aug; 48(30):7229-39. PubMed ID: 19580334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toroidal pores formed by antimicrobial peptides show significant disorder.
    Sengupta D; Leontiadou H; Mark AE; Marrink SJ
    Biochim Biophys Acta; 2008 Oct; 1778(10):2308-17. PubMed ID: 18602889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane interactions of antimicrobial peptides from Australian frogs.
    Fernandez DI; Gehman JD; Separovic F
    Biochim Biophys Acta; 2009 Aug; 1788(8):1630-8. PubMed ID: 19013126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.