These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 10590304)
1. Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Blondelle SE; Lohner K; Aguilar M Biochim Biophys Acta; 1999 Dec; 1462(1-2):89-108. PubMed ID: 10590304 [TBL] [Abstract][Full Text] [Related]
2. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Papo N; Shai Y Biochemistry; 2003 Aug; 42(31):9346-54. PubMed ID: 12899621 [TBL] [Abstract][Full Text] [Related]
3. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Prenner EJ; Lewis RN; McElhaney RN Biochim Biophys Acta; 1999 Dec; 1462(1-2):201-21. PubMed ID: 10590309 [TBL] [Abstract][Full Text] [Related]
4. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563 [TBL] [Abstract][Full Text] [Related]
5. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Dathe M; Wieprecht T Biochim Biophys Acta; 1999 Dec; 1462(1-2):71-87. PubMed ID: 10590303 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Shai Y Biochim Biophys Acta; 1999 Dec; 1462(1-2):55-70. PubMed ID: 10590302 [TBL] [Abstract][Full Text] [Related]
7. Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Oren Z; Ramesh J; Avrahami D; Suryaprakash N; Shai Y; Jelinek R Eur J Biochem; 2002 Aug; 269(16):3869-80. PubMed ID: 12180963 [TBL] [Abstract][Full Text] [Related]
8. Conformational and functional studies of gomesin analogues by CD, EPR and fluorescence spectroscopies. Moraes LG; Fázio MA; Vieira RF; Nakaie CR; Miranda MT; Schreier S; Daffre S; Miranda A Biochim Biophys Acta; 2007 Jan; 1768(1):52-8. PubMed ID: 17027634 [TBL] [Abstract][Full Text] [Related]
9. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751 [TBL] [Abstract][Full Text] [Related]
10. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Kiyota T; Lee S; Sugihara G Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958 [TBL] [Abstract][Full Text] [Related]
11. (19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. Afonin S; Glaser RW; Sachse C; Salgado J; Wadhwani P; Ulrich AS Biochim Biophys Acta; 2014 Sep; 1838(9):2260-8. PubMed ID: 24699372 [TBL] [Abstract][Full Text] [Related]
12. Cell selectivity correlates with membrane-specific interactions: a case study on the antimicrobial peptide G15 derived from granulysin. Ramamoorthy A; Thennarasu S; Tan A; Lee DK; Clayberger C; Krensky AM Biochim Biophys Acta; 2006 Feb; 1758(2):154-63. PubMed ID: 16579960 [TBL] [Abstract][Full Text] [Related]
13. Conformational mapping of the N-terminal peptide of HIV-1 gp41 in membrane environments using (13)C-enhanced Fourier transform infrared spectroscopy. Gordon LM; Mobley PW; Pilpa R; Sherman MA; Waring AJ Biochim Biophys Acta; 2002 Feb; 1559(2):96-120. PubMed ID: 11853678 [TBL] [Abstract][Full Text] [Related]
14. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
15. Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes. Abraham T; Prenner EJ; Lewis RN; Mant CT; Keller S; Hodges RS; McElhaney RN Biochim Biophys Acta; 2014 May; 1838(5):1420-9. PubMed ID: 24388950 [TBL] [Abstract][Full Text] [Related]
16. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016 [TBL] [Abstract][Full Text] [Related]
17. Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides. Avrahami D; Oren Z; Shai Y Biochemistry; 2001 Oct; 40(42):12591-603. PubMed ID: 11601983 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the unique function of a reduced amide bond in a cytolytic peptide that acts on phospholipid membranes. Oh JE; Lee KH Biochem J; 2000 Dec; 352 Pt 3(Pt 3):659-66. PubMed ID: 11104671 [TBL] [Abstract][Full Text] [Related]
19. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy. Mani R; Waring AJ; Hong M Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158 [TBL] [Abstract][Full Text] [Related]
20. Ranacyclins, a new family of short cyclic antimicrobial peptides: biological function, mode of action, and parameters involved in target specificity. Mangoni ML; Papo N; Mignogna G; Andreu D; Shai Y; Barra D; Simmaco M Biochemistry; 2003 Dec; 42(47):14023-35. PubMed ID: 14636071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]