BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 10590476)

  • 1. Patterns of repair of dystrophic mouse muscle: studies on isolated fibers.
    Blaveri K; Heslop L; Yu DS; Rosenblatt JD; Gross JG; Partridge TA; Morgan JE
    Dev Dyn; 1999 Nov; 216(3):244-56. PubMed ID: 10590476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise improves the success of myoblast transplantation in mdx mice.
    Bouchentouf M; Benabdallah BF; Mills P; Tremblay JP
    Neuromuscul Disord; 2006 Aug; 16(8):518-29. PubMed ID: 16919954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane.
    De Bari C; Dell'Accio F; Vandenabeele F; Vermeesch JR; Raymackers JM; Luyten FP
    J Cell Biol; 2003 Mar; 160(6):909-18. PubMed ID: 12629053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myonucleus-related properties in soleus muscle fibers of mdx mice.
    Terada M; Lan YB; Kawano F; Ohira T; Higo Y; Nakai N; Imaizumi K; Ogura A; Nishimoto N; Adachi Y; Ohira Y
    Cells Tissues Organs; 2010; 191(3):248-59. PubMed ID: 19776548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene complementation using myoblast transfer into fetal muscle.
    Sopper MM; Hauschka SD; Hoffman E; Ontell M
    Gene Ther; 1994 Mar; 1(2):108-13. PubMed ID: 7584065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human muscle precursor cells give rise to functional satellite cells in vivo.
    Ehrhardt J; Brimah K; Adkin C; Partridge T; Morgan J
    Neuromuscul Disord; 2007 Aug; 17(8):631-8. PubMed ID: 17588754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice.
    de la Garza-Rodea AS; van der Velde I; Boersma H; Gonçalves MA; van Bekkum DW; de Vries AA; Knaän-Shanzer S
    Cell Transplant; 2011; 20(2):217-31. PubMed ID: 20719081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine receptors and nerve terminal distribution at the neuromuscular junction of long-term regenerated muscle fibers.
    Marques MJ; Mendes ZT; Minatel E; Santo Neto H
    J Neurocytol; 2005 Dec; 34(6):387-96. PubMed ID: 16902760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers.
    Yablonka-Reuveni Z; Anderson JE
    Dev Dyn; 2006 Jan; 235(1):203-12. PubMed ID: 16258933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation.
    Karpati G; Pouliot Y; Zubrzycka-Gaarn E; Carpenter S; Ray PN; Worton RG; Holland P
    Am J Pathol; 1989 Jul; 135(1):27-32. PubMed ID: 2672825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matching host muscle and donor myoblasts for myosin heavy chain improves myoblast transfer therapy.
    Qu Z; Huard J
    Gene Ther; 2000 Mar; 7(5):428-37. PubMed ID: 10694825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation.
    Chiu RC; Zibaitis A; Kao RL
    Ann Thorac Surg; 1995 Jul; 60(1):12-8. PubMed ID: 7598572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of increasing dystrophin-positive myofibers by myoblast transplantation: study using mdx/beta-galactosidase transgenic mice.
    Kinoshita I; Vilquin JT; Tremblay JP
    Acta Neuropathol; 1996; 91(5):489-93. PubMed ID: 8740229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased expression of deltaCaMKII isoforms in skeletal muscle regeneration: Implications in dystrophic muscle disease.
    Abraham ST; Shaw C
    J Cell Biochem; 2006 Feb; 97(3):621-32. PubMed ID: 16215994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate of myoblasts following transplantation into mature muscle.
    Rando TA; Pavlath GK; Blau HM
    Exp Cell Res; 1995 Oct; 220(2):383-9. PubMed ID: 7556447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High efficiency of muscle regeneration after human myoblast clone transplantation in SCID mice.
    Huard J; Verreault S; Roy R; Tremblay M; Tremblay JP
    J Clin Invest; 1994 Feb; 93(2):586-99. PubMed ID: 8113396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice.
    Auda-Boucher G; Rouaud T; Lafoux A; Levitsky D; Huchet-Cadiou C; Feron M; Guevel L; Talon S; Fontaine-Pérus J; Gardahaut MF
    Exp Cell Res; 2007 Mar; 313(5):997-1007. PubMed ID: 17275812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly functional mini-dystrophin/GFP fusion gene for cell and gene therapy studies of Duchenne muscular dystrophy.
    Li S; Kimura E; Ng R; Fall BM; Meuse L; Reyes M; Faulkner JA; Chamberlain JS
    Hum Mol Genet; 2006 May; 15(10):1610-22. PubMed ID: 16595609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes.
    Marchand E; Constantin B; Balghi H; Claudepierre MC; Cantereau A; Magaud C; Mouzou A; Raymond G; Braun S; Cognard C
    Exp Cell Res; 2004 Jul; 297(2):363-79. PubMed ID: 15212940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.
    Vlahovich N; Schevzov G; Nair-Shaliker V; Ilkovski B; Artap ST; Joya JE; Kee AJ; North KN; Gunning PW; Hardeman EC
    Cell Motil Cytoskeleton; 2008 Jan; 65(1):73-85. PubMed ID: 17968984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.