BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 10590510)

  • 21. Actin immunoreactivity localizes with segregated microtubules and membraneous organelles and in the subaxolemmal region in the beta,beta'-iminodipropionitrile axon.
    Papasozomenos SC; Payne MR
    J Neurosci; 1986 Dec; 6(12):3483-91. PubMed ID: 2432199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos.
    Letourneau PC
    J Cell Biol; 1983 Oct; 97(4):963-73. PubMed ID: 6352712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching.
    Ketschek A; Jones S; Spillane M; Korobova F; Svitkina T; Gallo G
    Dev Neurobiol; 2015 Dec; 75(12):1441-61. PubMed ID: 25846486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon.
    Vale RD; Schnapp BJ; Reese TS; Sheetz MP
    Cell; 1985 Feb; 40(2):449-54. PubMed ID: 2578324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex.
    Bridgman PC
    J Cell Biol; 1999 Sep; 146(5):1045-60. PubMed ID: 10477758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Actin dynamics is essential for myosin-based transport of membrane organelles.
    Semenova I; Burakov A; Berardone N; Zaliapin I; Slepchenko B; Svitkina T; Kashina A; Rodionov V
    Curr Biol; 2008 Oct; 18(20):1581-6. PubMed ID: 18951026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of actin filaments with microtubules is mediated by microtubule-associated proteins and regulated by phosphorylation.
    Selden SC; Pollard TD
    Ann N Y Acad Sci; 1986; 466():803-12. PubMed ID: 3460455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter.
    Fan A; Tofangchi A; Kandel M; Popescu G; Saif T
    Sci Rep; 2017 Oct; 7(1):14188. PubMed ID: 29079766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments.
    Jones SL; Korobova F; Svitkina T
    J Cell Biol; 2014 Apr; 205(1):67-81. PubMed ID: 24711503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro reconstitution of dynamic microtubules interacting with actin filament networks.
    Preciado López M; Huber F; Grigoriev I; Steinmetz MO; Akhmanova A; Dogterom M; Koenderink GH
    Methods Enzymol; 2014; 540():301-20. PubMed ID: 24630114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The cytoskeletons of isolated, neuronal growth cones.
    Gordon-Weeks PR
    Neuroscience; 1987 Jun; 21(3):977-89. PubMed ID: 2888041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon.
    Vale RD; Schnapp BJ; Reese TS; Sheetz MP
    Cell; 1985 Mar; 40(3):559-69. PubMed ID: 2578887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules.
    Mohan R; John A
    IUBMB Life; 2015 Jun; 67(6):395-403. PubMed ID: 26104829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gelsolin inhibition of fast axonal transport indicates a requirement for actin microfilaments.
    Brady ST; Lasek RJ; Allen RD; Yin HL; Stossel TP
    Nature; 1984 Jul 5-11; 310(5972):56-8. PubMed ID: 6204208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Squid p196, a new member of the myosin-V class of motor proteins, is associated with motile axoplasmic organelles.
    Cohen DL
    Brain Res; 2001 Feb; 890(2):233-45. PubMed ID: 11164789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Amyloid Precursor Protein of Alzheimer's Disease Clusters at the Organelle/Microtubule Interface on Organelles that Bind Microtubules in an ATP Dependent Manner.
    Stevenson JW; Conaty EA; Walsh RB; Poidomani PJ; Samoriski CM; Scollins BJ; DeGiorgis JA
    PLoS One; 2016; 11(1):e0147808. PubMed ID: 26814888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport.
    Allen RD; Weiss DG; Hayden JH; Brown DT; Fujiwake H; Simpson M
    J Cell Biol; 1985 May; 100(5):1736-52. PubMed ID: 2580845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons.
    Morris RL; Hollenbeck PJ
    J Cell Biol; 1995 Dec; 131(5):1315-26. PubMed ID: 8522592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytoskeletal requirements in axonal transport of slow component-b.
    Roy S; Winton MJ; Black MM; Trojanowski JQ; Lee VM
    J Neurosci; 2008 May; 28(20):5248-56. PubMed ID: 18480281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.