These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 10590816)

  • 21. Visual search in temporally segregated displays: converging operations in the study of the preview benefit.
    Belopolsky AV; Peterson MS; Kramer AF
    Brain Res Cogn Brain Res; 2005 Aug; 24(3):453-66. PubMed ID: 16099358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The modality shift effect and the effectiveness of warning signals in different modalities.
    Rodway P
    Acta Psychol (Amst); 2005 Oct; 120(2):199-226. PubMed ID: 15993828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural processes of attentional inhibition of return traced with magnetoencephalography.
    Ayabe T; Ishizu T; Kojima S; Urakawa T; Nishitani N; Kaneoke Y; Kakigi R
    Neuroscience; 2008 Oct; 156(3):769-80. PubMed ID: 18762232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tracking the location of visuospatial attention in a contingent capture paradigm.
    Leblanc E; Prime DJ; Jolicoeur P
    J Cogn Neurosci; 2008 Apr; 20(4):657-71. PubMed ID: 18052780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emotional devaluation of distracting patterns and faces: a consequence of attentional inhibition during visual search?
    Raymond JE; Fenske MJ; Westoby N
    J Exp Psychol Hum Percept Perform; 2005 Dec; 31(6):1404-15. PubMed ID: 16366798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What drives memory-driven attentional capture? The effects of memory type, display type, and search type.
    Olivers CN
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1275-91. PubMed ID: 19803636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Focal distraction: spatial shifts of attentional focus are not required for contingent capture.
    Ghorashi SM; Zuvic SM; Visser TA; Di Lollo V
    J Exp Psychol Hum Percept Perform; 2003 Feb; 29(1):78-91. PubMed ID: 12669749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interlateral asymmetry in the time course of the effect of a peripheral prime stimulus.
    Castro-Barros BA; Righi LL; Grechi G; Ribeiro-do-Valle LE
    Brain Cogn; 2008 Apr; 66(3):265-79. PubMed ID: 17961895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining subprocesses of visual feature search with reaction time models.
    Müller-Plath G; Pollmann S
    Psychol Res; 2003 May; 67(2):80-105. PubMed ID: 12739145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two types of action error: electrophysiological evidence for separable inhibitory and sustained attention neural mechanisms producing error on go/no-go tasks.
    O'Connell RG; Dockree PM; Bellgrove MA; Turin A; Ward S; Foxe JJ; Robertson IH
    J Cogn Neurosci; 2009 Jan; 21(1):93-104. PubMed ID: 18476764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of spatial distribution of attention during inhibition of return (IOR) on flanker interference in hearing and congenitally deaf people.
    Chen Q; Zhang M; Zhou X
    Brain Res; 2006 Sep; 1109(1):117-27. PubMed ID: 16859649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the time course of tactile reflexive attention using a non-spatial discrimination task.
    Miles E; Poliakoff E; Brown RJ
    Acta Psychol (Amst); 2008 Jun; 128(2):210-5. PubMed ID: 18262498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic and voluntary control of attention in young and older adults.
    Juola JF; Koshino H; Warner CB; McMickell M; Peterson M
    Am J Psychol; 2000; 113(2):159-78. PubMed ID: 10862340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Guidance of eye movements during visual conjunction search: local and global contextual effects on target discriminability.
    Shen K; Paré M
    J Neurophysiol; 2006 May; 95(5):2845-55. PubMed ID: 16467428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clear distinction between preattentive and attentive process in schizophrenia by visual search performance.
    Tanaka G; Mori S; Inadomi H; Hamada Y; Ohta Y; Ozawa H
    Psychiatry Res; 2007 Jan; 149(1-3):25-31. PubMed ID: 17123633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An onset advantage without a preview benefit: neuropsychological evidence separating onset and preview effects in search.
    Humphreys GW; Olivers CN; Yoon EY
    J Cogn Neurosci; 2006 Jan; 18(1):110-20. PubMed ID: 16417687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An attentional mechanism for selecting appropriate actions afforded by graspable objects.
    Loach D; Frischen A; Bruce N; Tsotsos JK
    Psychol Sci; 2008 Dec; 19(12):1253-7. PubMed ID: 19121133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selection of new objects by onset capture and visual marking.
    Osugi T; Hayashi D; Murakami I
    Vision Res; 2016 May; 122():21-33. PubMed ID: 27001341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual selective attention and the effects of monetary rewards.
    Della Libera C; Chelazzi L
    Psychol Sci; 2006 Mar; 17(3):222-7. PubMed ID: 16507062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporal Binding and Segmentation in Visual Search: A Computational Neuroscience Analysis.
    Mavritsaki E; Humphreys G
    J Cogn Neurosci; 2016 Oct; 28(10):1553-67. PubMed ID: 27243617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.