These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10591071)

  • 1. Calcium release induced by high K+ and caffeine in cultured skeletal muscle cells of embryonic chicken.
    Zhang XH; Wu J; Shen MX; Zhu PH
    Pflugers Arch; 1999 Nov; 438(6):827-36. PubMed ID: 10591071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embryonic chicken skeletal muscle cells fail to develop normal excitation-contraction coupling in the absence of the alpha ryanodine receptor. Implications for a two-ryanodine receptor system.
    Ivanenko A; McKemy DD; Kenyon JL; Airey JA; Sutko JL
    J Biol Chem; 1995 Mar; 270(9):4220-3. PubMed ID: 7876181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A caffeine- and ryanodine-sensitive Ca2+ store in avian sensory neurons.
    Ivanenko A; Baring MD; Airey JA; Sutko JL; Kenyon JL
    J Neurophysiol; 1993 Aug; 70(2):710-22. PubMed ID: 8410168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones.
    Kano M; Garaschuk O; Verkhratsky A; Konnerth A
    J Physiol; 1995 Aug; 487(1):1-16. PubMed ID: 7473240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caffeine-induced calcium release from internal stores in cultured rat sensory neurons.
    Usachev Y; Shmigol A; Pronchuk N; Kostyuk P; Verkhratsky A
    Neuroscience; 1993 Dec; 57(3):845-59. PubMed ID: 8309540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in ryanodine receptor-mediated calcium release during skeletal muscle differentiation.
    Wingertzahn MA; Ochs RS
    Proc Soc Exp Biol Med; 1999 Jul; 221(3):234-41. PubMed ID: 10404041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation-contraction coupling of cultured human skeletal muscle cells and the relation between basal cytosolic Ca2+ and excitability.
    Benders AA; Oosterhof A; Wevers RA; Veerkamp JH
    Cell Calcium; 1997 Jan; 21(1):81-91. PubMed ID: 9056080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth-dependent alterations of intracellular Ca(2+)-handling mechanisms of vascular smooth muscle cells. PDGF negatively regulates functional expression of voltage-dependent, IP3-mediated, and CA(2+)-induced Ca2+ release channels.
    Masuo M; Toyo-oka T; Shin WS; Sugimoto T
    Circ Res; 1991 Nov; 69(5):1327-39. PubMed ID: 1657444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional IP3- and ryanodine-sensitive calcium stores in presynaptic varicosities of NG108-15 (rodent neuroblastoma x glioma hybrid) cells.
    Rondé P; Dougherty JJ; Nichols RA
    J Physiol; 2000 Dec; 529 Pt 2(Pt 2):307-19. PubMed ID: 11101642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.
    Islam MS; Larsson O; Nilsson T; Berggren PO
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):679-86. PubMed ID: 7702559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Mg2+ in terminating Ca2+ release in cultured rat skeletal muscle.
    Suda N
    FEBS Lett; 1995 Feb; 359(2-3):223-8. PubMed ID: 7867805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of halothane and isoflurane on cytosolic calcium ion concentrations and contraction in the vascular smooth muscle of the rat aorta.
    Tsuchida H; Namba H; Yamakage M; Fujita S; Notsuki E; Namiki A
    Anesthesiology; 1993 Mar; 78(3):531-40. PubMed ID: 7681270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.
    Garaschuk O; Yaari Y; Konnerth A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caffeine-sensitive Ca2+ stores in carp retinal bipolar cells.
    Wu D; Zhu PH
    Neuroreport; 1999 Dec; 10(18):3897-901. PubMed ID: 10716230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine- and ryanodine-sensitive Ca2+ stores in cultured guinea pig myenteric neurons.
    Kimball BC; Yule DI; Mulholland MW
    Am J Physiol; 1996 Apr; 270(4 Pt 1):G594-603. PubMed ID: 8928789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of calcium release and the effect of ryanodine in skinned muscle fibres of the toad.
    Lamb GD; Stephenson DG
    J Physiol; 1990 Apr; 423():519-42. PubMed ID: 2167367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive control of intracellular Ca2+ release in C2C12 mouse myotubes.
    Gyorke I; Gyorke S
    Pflugers Arch; 1996 Apr; 431(6):838-43. PubMed ID: 8927499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low serum promotes maturation of excitation-contraction coupling in myotubes.
    Suda N; Dirksen RT; Gonzalez A; Beam KG
    Pflugers Arch; 2000 Mar; 439(5):555-8. PubMed ID: 10764214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major difference between rat and guinea-pig ureter in the ability of agonists and caffeine to release Ca2+ and influence force.
    Burdyga TV; Taggart MJ; Wray S
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):327-35. PubMed ID: 8847629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of calcium release from sarcoplasmic reticulum of skeletal muscle by xanthone and norathyriol.
    Kang JJ; Cheng YW; Ko FN; Kuo ML; Lin CN; Teng CM
    Br J Pharmacol; 1996 Aug; 118(7):1736-42. PubMed ID: 8842439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.