These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1059109)

  • 21. Adaptive variation in structure and function of kidneys of speciating subterranean mole rats.
    Nevo E; Simson S; Beiles A; Yahav S
    Oecologia; 1989 May; 79(3):366-71. PubMed ID: 23921402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mole rat Spalax: evolutionary significance of chromosome variation.
    Wahrman J; Goitein R; Nevo E
    Science; 1969 Apr; 164(3875):82-4. PubMed ID: 5773717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribonuclease in different chromosomal species of the mole rat, superspecies Spalax ehrenbergi: concentration in the pancreas and primary structure.
    Jekel PA; Ciabatti C; Schüller C; Beintema JJ; Nevo E
    Prog Clin Biol Res; 1990; 335():367-81. PubMed ID: 2309013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive variation of pelage color within and between species of the subterranean mole rat (Spalax ehrenbergi) in Israel.
    Heth G; Beiles A; Nevo E
    Oecologia; 1988 Jan; 74(4):617-622. PubMed ID: 28311771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coccidia (Apicomplexa), genetic diversity, and environmental unpredictability of four chromosomal species of the subterranean superspecies Spalax ehrenbergi (mole-rat) in Israel.
    Couch L; Duszynski DW; Nevo E
    J Parasitol; 1993 Apr; 79(2):181-9. PubMed ID: 8459327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive differentiation of body size in speciating mole rats.
    Nevo E; Beiles A; Heth G; Simson S
    Oecologia; 1986 Jun; 69(3):327-333. PubMed ID: 28311332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Helminths of birds and mammals from Israel. 3. Helminths from chromosomal forms of the mole-rat, Spalax ehrenbergi.
    Wertheim G; Nevo E
    J Helminthol; 1971; 45(2):161-9. PubMed ID: 5123696
    [No Abstract]   [Full Text] [Related]  

  • 28. Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax.
    Zhao Y; Tang JW; Yang Z; Cao YB; Ren JL; Ben-Abu Y; Li K; Chen XQ; Du JZ; Nevo E
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2146-51. PubMed ID: 26858405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transgressive aggression in Sceloporus hybrids confers fitness through advantages in male agonistic encounters.
    Robbins TR; Pruitt JN; Straub LE; McCoy ED; Mushinsky HR
    J Anim Ecol; 2010 Jan; 79(1):137-47. PubMed ID: 19682141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intra- and interspecific aggression do not modulate androgen levels in dusky gregories, yet male aggression is reduced by an androgen blocker.
    Vullioud P; Bshary R; Ros AF
    Horm Behav; 2013 Aug; 64(3):430-8. PubMed ID: 23838629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fighting cichlids: Dynamic of intrasexual aggression in dyadic agonistic encounters.
    Scaia MF; Morandini L; Noguera CA; Ramallo MR; Somoza GM; Pandolfi M
    Behav Processes; 2018 Feb; 147():61-69. PubMed ID: 29273550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary expansion of Mhc class I loci in the mole-rat, Spalax ehrenbergi.
    Vincek V; Nizetić D; Golubić M; Figueroa F; Nevo E; Klein J
    Mol Biol Evol; 1987 Sep; 4(5):483-91. PubMed ID: 3449737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Causes and Consequences of Behavioral Interference between Species.
    Grether GF; Peiman KS; Tobias JA; Robinson BW
    Trends Ecol Evol; 2017 Oct; 32(10):760-772. PubMed ID: 28797610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribosomal DNA (rDNA) spacer polymorphism in mole rats.
    Suzuki H; Moriwaki K; Nevo E
    Mol Biol Evol; 1987 Nov; 4(6):602-10. PubMed ID: 2895413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The evolutionary consequences of interspecific aggression.
    Grether GF; Anderson CN; Drury JP; Kirschel AN; Losin N; Okamoto K; Peiman KS
    Ann N Y Acad Sci; 2013 Jun; 1289():48-68. PubMed ID: 23601031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive energy metabolism in four chromosomal species of subterranean mole rats.
    Yahav S; Simson S; Nevo E
    Oecologia; 1988 Dec; 77(4):533-536. PubMed ID: 28311274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromosomes in a hybrid zone of Israeli mole rars (Spalax, Rodentia).
    Ivanitskaya E; Rashkovetsky L; Nevo E
    Genetika; 2010 Oct; 46(10):1301-4. PubMed ID: 21250542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The lens protein alpha A-crystallin of the blind mole rat, Spalax ehrenbergi: evolutionary change and functional constraints.
    Hendriks W; Leunissen J; Nevo E; Bloemendal H; de Jong WW
    Proc Natl Acad Sci U S A; 1987 Aug; 84(15):5320-4. PubMed ID: 3474658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary regulation of the blind subterranean mole rat, Spalax, revealed by genome-wide gene expression.
    Brodsky LI; Jacob-Hirsch J; Avivi A; Trakhtenbrot L; Zeligson S; Amariglio N; Paz A; Korol AB; Band M; Rechavi G; Nevo E
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):17047-52. PubMed ID: 16286648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterochromatin differentiation shows the pathways of karyotypic evolution in Israeli mole rats (Spalax, Spalacidae, Rodentia).
    Ivanitskaya E; Belyayev A; Nevo E
    Cytogenet Genome Res; 2005; 111(2):159-65. PubMed ID: 16103658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.