BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 1059134)

  • 1. Headgroup conformation and lipid--cholesterol association in phosphatidylcholine vesicles: a 31P(1H) nuclear Overhauser effect study.
    Yeagle PL; Hutton WC; Huang CH; Martin RB
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3477-81. PubMed ID: 1059134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the phosphate group in phospholipid bilayers. A 31P-1H transient Overhauser effect study.
    Milburn MP; Jeffrey KR
    Biophys J; 1990 Jul; 58(1):187-94. PubMed ID: 2383631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles.
    Tauskela JS; Thompson M
    Biochim Biophys Acta; 1992 Feb; 1104(1):137-46. PubMed ID: 1550841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective 31P(1H) nuclear Overhauser effect study on the polar headgroup conformation of phospholipids in micelles in organic solvents.
    Shibata T; Uzawa J; Sugiura Y
    Chem Phys Lipids; 1983 Jul; 33(1):1-10. PubMed ID: 6627521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure in the polar head region of phospholipid bilayers: A 31P [1H] nuclear Overhauser effect study.
    Yeagle PL; Hutton WC; Huang CH; Martin RB
    Biochemistry; 1976 May; 15(10):2121-4. PubMed ID: 1276127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol rotation in phospholipid vesicles as observed by 13C-NMR.
    Yeagle PL
    Biochim Biophys Acta; 1981 Jan; 640(1):263-73. PubMed ID: 7213686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid head-group conformations; intermolecular interactions and cholesterol effects.
    Yeagle PL; Hutton WC; Huang C; Martin RB
    Biochemistry; 1977 Oct; 16(20):4344-9. PubMed ID: 911759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of cholesterol on bilayers of ester- and ether-linked phospholipids. Permeability and 13C-nuclear magnetic resonance measurements.
    Bittman R; Clejan S; Lund-Katz S; Phillips MC
    Biochim Biophys Acta; 1984 May; 772(2):117-26. PubMed ID: 6722139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nuclear magnetic resonance study of sphingomyelin in bilayer systems.
    Schmidt CF; Barenholz Y; Thompson TE
    Biochemistry; 1977 Jun; 16(12):2649-56. PubMed ID: 889781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance spectra of membranes.
    Brûlet P; McConnell HM
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1451-5. PubMed ID: 165509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of paramagnetic shift reagents on the 13C nuclear magnetic resonance spectra of egg phosphatidylcholine enriched with 13C in the N-methyl carbons.
    Sears B; Hutton WC; Thompson TE
    Biochemistry; 1976 Apr; 15(8):1635-9. PubMed ID: 178350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformations of dibucaine and tetracaine in small unilamellar phosphatidylcholine vesicles as studied by nuclear Overhauser effects in 1H nuclear magnetic resonance spectroscopy.
    Wakita M; Kuroda Y; Fujiwara Y; Nakagawa T
    Chem Phys Lipids; 1992 Jul; 62(1):45-54. PubMed ID: 1423802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics of the local anesthetic tetracaine in phospholipid vesicles.
    Yeagle PL; Hutton WC; Martin RB
    Biochim Biophys Acta; 1977 Mar; 465(2):173-8. PubMed ID: 16250332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P-nuclear magnetic resonance and 31P(1H) nuclear Overhauser effect analysis of mixed egg phosphatidylcholine-sodium taurocholate vesicles and micelles.
    Castellino FJ; Violand BN
    Arch Biochem Biophys; 1979 Apr; 193(2):543-50. PubMed ID: 572659
    [No Abstract]   [Full Text] [Related]  

  • 15. PMR studies of phosphatidylcholine-cholesterol vesicles interacting with lucensomycin.
    Podo F; Di Blasi R; Crifò C; Strom R
    Physiol Chem Phys; 1979; 11(2):125-33. PubMed ID: 482384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-13 nuclear magnetic resonance studies of cholesterol-egg yolk phosphatidylcholine vesicles.
    Brainard JR; Cordes EH
    Biochemistry; 1981 Aug; 20(16):4607-17. PubMed ID: 7197546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magic-angle spinning NMR studies of molecular organization in multibilayers formed by 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine.
    Halladay HN; Stark RE; Ali S; Bittman R
    Biophys J; 1990 Dec; 58(6):1449-61. PubMed ID: 2275962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of the conformation of the polar head groups of phosphatidylcholine on its packing in bilayers. Nuclear magnetic resonance studies on the effect of the binding of lanthanide ions.
    Lichtenberg D; Amselem S; Tamir I
    Biochemistry; 1979 Sep; 18(19):4169-72. PubMed ID: 486415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location and interactions of phospholipid and cholesterol in human low density lipoprotein from 31P nuclear magnetic resonance.
    Yeagle PL; Martin RB; Pottenger L; Langdon RG
    Biochemistry; 1978 Jul; 17(14):2707-10. PubMed ID: 210780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory for nuclear magnetic relaxation of probes in anisotropic systems: application of cholesterol in phospholipid vesicles.
    Brainard JR; Szabo A
    Biochemistry; 1981 Aug; 20(16):4618-28. PubMed ID: 7197547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.